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Abstract
Obesity is an excessive accumulation of body fat that 
may be harmful to health. Today, obesity is a major public 
health problem, affecting in greater or lesser proportion all 
demographic groups. Obesity is estimated by body mass 
index (BMI) in a clinical setting, but BMI reports neither 
body composition nor the location of excess body fat. 
Deaths from cardiovascular diseases, cancer and diabetes 
accounted for approximately 65% of all deaths, and 
adiposity and mainly abdominal adiposity are associated 
with all these disorders. Adipose tissue could expand to 
inflexibility levels. Then, adiposity is associated with a state 
of low-grade chronic inflammation, with increased tumor 
necrosis factor-α and interleukin-6 release, which interfere 
with adipose cell differentiation, and the action pattern 
of adiponectin and leptin until the adipose tissue begins 
to be dysfunctional. In this state the subject presents 
insulin resistance and hyperinsulinemia, probably the first 
step of a dysfunctional metabolic system. Subsequent 
to central obesity, insulin resistance, hyperglycemia, 
hypertriglyceridemia, hypoalphalipoproteinemia, hyper-
tension and fatty liver are grouped in the so-called 
metabolic syndrome (MetS). In subjects with MetS an 
energy balance is critical to maintain a healthy body 
weight, mainly limiting the intake of high energy density 
foods (fat). However, high-carbohydrate rich (CHO) 
diets increase postprandial peaks of insulin and glucose. 
Triglyceride-rich lipoproteins are also increased, which 
interferes with reverse cholesterol transport lowering high-
density lipoprotein cholesterol. In addition, CHO-rich diets 
could move fat from peripheral to central deposits and 
reduce adiponectin activity in peripheral adipose tissue. All 
these are improved with monounsaturated fatty acid-rich 
diets. Lastly, increased portions of ω-3 and ω-6 fatty acids 
also decrease triglyceride levels, and complement the 
healthy diet that is recommended in patients with MetS.
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Core tip: Central obesity, the insulin resistance, hyper-
glycemia, hypertriglyceridemia, hypoalphalipoproteinemia, 
hypertension and fatty liver are grouped in the so-
called metabolic syndrome (MetS). In subjects with 
MetS an energy balance is critical to maintain a healthy 
body weight, mainly limiting the intake of high energy 
density foods. However, high-carbohydrate rich (CHO) 
diets increase postprandial peaks of insulin and glucose. 
Triglyceride-rich lipoproteins are also increased, which 
interferes with reverse cholesterol transport lowering high-
density lipoprotein cholesterol. In addition, CHO-rich diets 
could move fat from peripheral to central deposits and 
reduce adiponectin activity in peripheral adipose tissue. All 
these are improved with monounsaturated fatty acid-rich 
diets. Lastly, increased portions of ω-3 and ω-6 fatty acids 
also decrease triglyceride levels, and complement the 
healthy diet that is recommended in patients with MetS.
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INTRODUCTION
Overweight and obesity are an excessive accumulation 
of body fat that may be harmful to health. Today, 
obesity is a major public health problem, affecting in 
greater or lesser proportion all demographic groups. 
Obesity is estimated by body mass index (BMI) 
in a clinical setting, but BMI reports neither body 
composition nor the location of excess body fat. People 
with normal weight but high body fat percentages could 
have a cardiovascular risk equal to that of people with 
obesity.

Deaths from cardiovascular diseases (CVD), cancer 
and diabetes accounted for approximately 65% of all 
deaths, and general adiposity and mainly abdominal 
adiposity are associated with increased risk of death for 
all these disorders. Adipose tissue could expand to levels 
of inflexibility. Then, adiposity is associated with a state 
of low-grade chronic inflammation, with increased tumor 
necrosis factor (TNF)-α and interleukin (IL)-6 release, 
which interfere with adipose cell differentiation, and the 
action pattern of adiponectin and leptin until the adipose 
tissue begins to be dysfunctional. In this state the subject 
presents insulin resistance (IR) and hyperinsulinemia, 
probably the first step of a dysfunctional metabolic 
system. Subsequent to central obesity, insulin resistance, 
hyperglycemia, hypertriglyceridemia, hypoalphalipo-

proteinemia, hypertension and fatty liver are grouped in 
the so-called metabolic syndrome (MetS).

In subjects with MetS an energy balance is critical 
to maintain a healthy body weight, mainly limiting high 
energy density foods. The first factor to be avoided in 
the prevention of MetS is obesity, and the percentage of 
fat in the diet has traditionally been associated with the 
development of obesity. However, it is well established 
that the type of fat consumed could be more decisive 
than the total amount of fat consumed when we only 
look at changes in body composition and distribution of 
adipose tissue. In addition, insulin resistance is a feature 
of MetS and is associated with other components of 
the syndrome. The beneficial impact of fat quality on 
insulin sensitivity (IS) was not seen in individuals with a 
high fat intake (> 37E%). Other dietary factors that can 
influence various components of MetS, like postprandial 
glycemic and insulin levels, triglycerides and high-density 
lipoprotein (HDL)-C levels, weight regulation and body 
composition, as well as fatty liver, are the glycemic load 
(GL) and the excess of fructose, and amount of dietary 
fiber content of food eaten. The increased levels of 
triglycerides associated with hypoalphalipoproteinemia 
are a feature of insulin resistance and MetS, and increase 
cardiovascular risk regardless of low-density lipoprotein 
(LDL) cholesterol levels.

High-carbohydrate rich (CHO) diets increase post-
prandial peaks of insulin and glucose. Triglyceride-rich 
lipoproteins are also increased, which interferes with 
reverse cholesterol transport lowering HDL cholesterol. In 
addition, CHO-rich diets could move fat from peripheral 
to central deposits and reduce adiponectin activity in 
peripheral adipose tissue. All these are improved with 
monounsaturated fatty acids (MUFA)-rich diets.

The American Diabetes Association (ADA) reco-
mmends an intake of dietary fiber of 20 to 35 g/d mainly 
because of the cholesterol-lowering and glucose-lowering 
effects of soluble fiber. However, more beneficial effects 
of a higher intake of dietary fiber, particularly of the 
soluble type, above the level recommended by the ADA, 
were reported to improve glycemic control, decreases 
hyperinsulinemia, and lower plasma lipid concentrations in 
patients with type 2 diabetes. 

Lastly, the prevalence of enlarged waist circum-
ference, hypertension and hypertriacylglycerolemia were 
reduced after the isoenergetic low fat high complex 
carbohydrates (LFHCC) supplemented with ω-3 diet. 
Thus, the prevalence of MetS fell by 20.5% after LFHCC 
ω-3 diet compared with the high saturated fatty acids 
(HSFA) (10.6%), high MUFA (HMUFA) (12%) or LFHCC 
(10.4%) diets. Therefore, increased fish intake instead 
of meat portions increases ω-3 fatty acids, and moderate 
portions of dried fruits (walnuts) increases ω-6, could 
complement the healthy diet that is recommended in 
patients with MetS.

In summary, an equilibrate calory diet, low in animal 
fat, sugar and fructose, high in MUFA and polyun-
saturated fatty acids (PUFA), fresh vegetables high 



485 November 15, 2016|Volume 7|Issue 19|WJD|www.wjgnet.com

in fiber, and with moderate complex carbohydrates 
portions, could improve weight loss, lower postprandial 
glucose and insulin levels, and triglyceride levels could 
also decrease, and, eventually, increased HDL cholesterol 
levels are observed. 

The maintenance of an ideal body weight, usually 
established between 18 and 25 years of age, requires 
achieving a life-long energy balance, where the amount 
of energy intake must equal the amount of energy 
expended. However, in the study of obesity in humans, 
if we look at only the imbalance between energy in-
take and energy expenditure, we have failed in its 
clinical application[1,2]. In humans, obesity depends on 
multiple factors apart from diet, like age and stage of 
development, genes and epigenetic factors, physical 
activity, environment, level of instruction and nutrition 
education, as well as several diseases that alter both 
physical and psychosocial interaction[3,4]. Therefore, the 
increase in overweight and obesity rates are classified as 
major public health issues, affecting in greater or lesser 
proportion all demographic groups, irrespective of age, 
sex, race, education or economic level[5]. World Health 
Organization (WHO) expects the 400 million obese 
adults worldwide registered in 2005[6] to double, and in 
the United States, obesity has been increasing in both 
adults and children in the last few years[7-9]. The age-
standardized rate of death from any cause was generally 
lowest among subjects with an optimal BMI of 22.5 to 
24.9 kg/m2[10-12].

Recently, it has been observed that death attributed to 
factors related to high BMI is in fourth place behind deaths 
from high blood pressure, smoking, and unhealthy diets; 
and is ahead of deaths attributable to diabetes, physical 
inactivity, high salt intake, alcoholism and high blood 
cholesterol levels[13]. In addition, epidemiology studies 
have established associations between food and nutrient 
intake with specific diseases such as cancer, diabetes and 
CVD[14,15] as well as with obesity, body fat distribution, 
hypertension, insulin resistance and hyperglycemia[16-18]. 

Deaths from CVD, cancer and diabetes accounted 
for up to approximately 65% of all deaths, and general 
adiposity and central adiposity are related with increased 
risk of death for all these disorders, shortened life ex-
pectancy and causes disability in addition to high economic 
costs. Where levels of BMI are higher than 25 kg/m2 a 
direct relationship with high mortality due to CVD is well 
established[3,19-23]. Cardiovascular disease accounts for 
approximately 38.5% of all deaths in EE.UU., although 
have declined substantially since the 1940s and 1960s[10]. 
This trend may be related with several primary prevention 
activities (for example, smoking cessation, sugar, trans fat 
and excess of saturated fat ingestion), improved treatment 
for ischemic acute phase and finally, improved secondary 
intervention (treatment of hypertension, hyperglycemia 
and hypercholesterolemia)[24,25]. The pattern of obesity 
may also influence this CVD risk and those with a waist-
hip ratio higher to or equal than the average have in 
general an odds ratio of 3.0 (95%CI: 2.1-4.2) for ischemic 
cerebrovascular, even when BMI and other risk factors 

were adjusted[26]. Last, a weight loss of 10% maintained 
over time in obese subjects may decrease the expected 
events of coronary and stroke diseases[27].

On the other hand, concurrent with obesity rates 
during the 90s, there was an increase of diabetes to 61% 
in the United States (mainly approximately 90%-95% 
of type 2 diabetes, T2D)[28]. The mortality rate directly 
attributable to diabetes is about 3%, and diabetic 
patients have 2-4 times higher cardiovascular risk and 
many die of CVD[29]. Obesity and high body fat are 
related with diabetes in all ethnic groups. In the United 
States approximately the 70% of T2D prevalence could 
be attributed to overweight and obesity and, after 10 
years, each kilogram gain from ideal body weight, raises 
the risk by 4.5%[10]. However, again “central obesity” is 
more strongly associated with metabolic complications 
linked to insulin resistance including diabetes[30,31]. For 
the prevention and treatment of T2D maintenance of a 
healthy body weight (BMI < 27-30 kg/m2) plus physical 
activity, limit the intake of sugar and saturated fat, and 
increase the consumption of mono and PUFA, as well as 
whole grains and fiber[32-34], is recommended. 

Finally, all cancers combined accounted for appro-
ximately 23% of the total number of deaths[10]. The 
relationship between BMI and a high mortality due to 
cancer in most specific sites[12,35] is well established. 
Obesity may account for up to 14% of cancer in men 
and up to 20% of cancer in women, and the risk of 
death from cancer in people with BMI ≥ 40 kg/m2 
increases up to 52% in men and 62% in women as 
compared with people with normal weight[36]. The 
underlying pathophysiological mechanisms that may be 
attributed to increase cancer rates are uncertain but can 
involve higher circulating levels of glucose, low-grade 
inflammatory state in many tissues, increased oxidative 
stress, as well as the bioavailability of hormones, mainly 
insulin, estrogens and androgens.

After obesity is developed most subjects present 
IR and hyperinsulinemia, probably the first step of a 
dysfunctional metabolic system. Subjects with more 
central obesity present a higher risk of IR, hyperglycemia, 
hypertriglyceridemia, hypoalphalipoproteinemia, hyper-
tension and fatty liver, and different combination are 
grouped in so-called MetS. In subjects with MetS achieving 
an energy balance is critical to maintain a healthy body 
weight, limiting the consumption of food with high energy 
density (fat). However, high-carbohydrate rich (CHO) 
diets increase postprandial peaks of insulin and glucose, 
and triglyceride-rich lipoproteins are also increased, which 
interferes with reverse cholesterol transport lowering HDL 
cholesterol, and could deposit fat mainly in central deposits 
and reduce adiponectin activity in peripheral adipose 
tissue. However, all these were improved with MUFA-rich 
diets. In addition, food with high fiber content (vegetables 
and whole-grain) and food rich in ω-3 and ω-6 fatty acids 
could improve some components of this dysfunctional 
metabolic system.

The traditional Mediterranean diet is featured by a 
moderate to high ingestion of olive oil, a lower density 
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of calories in the diet, legumes and vegetables, fruit, 
nuts, and whole cereals; a moderate to higher intake of 
poultry and fish; a moderate intake of dairy products, 
but more restrictive in higher caloric density foods such 
as red and processed meats, and sweets; finally, mainly 
red wine is drunk with meals[37]. Selected subjects at 
high cardiovascular risk, a Mediterranean style diet 
supplemented either with extra-virgin olive oil or nuts 
decrease the incidence of major cardiovascular events[38]. 
Finally, studies of healthy habits in the 50s[39] show that 
physical activity at work, walking and cycling as a means 
of transport all contributed to overall energy expenditure. 
However, these physical activities have decreased 
dramatically in societies today because of sedentary 
habits at work and in holiday life[40]. Thus, dietary habits, 
a major factor in controlling obesity, are made up of 
environmental, cultural, economic and technological 
aspects. These can be modified by agricultural policies 
that govern prices, extending the range and availability 
of food and regulating beneficial or harmful dietary 
components[41,42]. 

OBESITY ASSESSMENT
Obesity could be estimated only by measures of the 
body weight; however, relating body weight to height 
give us a more accurate measure of obesity[43]. The 
BMI or the Quetelet’s index is the measure that is 
currently used in clinical setting to graduate from the 
normal weight to obesity in adults, and is estimated 
by the weight/height ratio squared, and expressed 
as kg/m2. The approach taken by WHO is: (1) BMI 
between 18-25 kg/m2 is considered normal weight; (2) 
BMI between 25-29.9 kg/m2 is considered overweight; 
and (3) a BMI greater than or equal to 30 kg/m2 is 
defined as obesity[44,45]. However, BMI does not gives 
us information about body composition and body 
fat distribution, neither about individual variations in 
terms of amounts of lean body mass (fat-free muscle 
mass), or the pattern of depot on body fat distribution. 
Thus, the percentage of body fat (BF%) is a better 
measure as it relates the ratio of total weight of fatty 
body weight. However, it is more difficult to measure 
BF% than single BMI, but several methods of varying 
accuracy and complexity exist[46]. In a clinical setting the 
most commonly used anthropometric indicator of body 
composition analysis involving two components (body fat 
and free-fat mass) are estimated from measurements 
of skinfold thicknesses, that should be measured in 
several regions, in order to obtain a clearer picture of 
fat composition[47]. In research, the percentage of body 
fat determined by hydrostatic weighing (body weight 
by immersion), is the gold standard[48]. In addition, the 
bioelectrical impedance analysis technique is also used 
to measure body composition, and using a four-terminal 
bioimpedance analyzer has a prediction error less or 
equal to the standard anthropometry for estimating body 
fat[49]. Therefore, it is possible to estimate the amount 
of body water and the proportion of fat-free mass and 

by subtracting body fat from total body weight[50]. 
Furthermore, a relatively simple technique to evaluate 
the total and regional adiposity in an individual involves a 
study of the whole body with a scan densitometer (dual 
energy X-ray absorptiometry, DEXA)[51,52]. 

People with normal weight but high body fat per-
centages could have a cardiovascular risk equal to that 
of people with obesity. The range of normal body fat 
is 2%-5% in men and 10%-13% in women, while the 
obesity range of body fat percentage is above of 25% 
in men and 32% in women[53,54]. Experimentally, it was 
observed that BMI = 30 kg/m2 implies approximately 
30% of BF% at 20 years of age but increase to 40% 
at 60 year in men, while in older women these values 
were to 40% and 50%, respectively. Therefore, body 
fat composition changes with age and sex. Body fat 
percentage for adults can be estimated from the BMI as 
follows: BF% = 1.2 × BMI + 0.23 × age - 5.4 - (10.8 
× gender) (being 0 if gender is male and 1 if female; it 
differ for children). The correlation between BMI-BF% is r 
= 0.75 in male and r = 0.82 in females, for all ages[55]. 

On the other hand, BMI does not report on the 
location or distribution of excess body fat, it is to say 
about the distribution of body fat. Central obesity is 
characterized mainly by excess fat depot in the ab-
dominal area and within the peritoneal cavity and lower 
expansion of peripheral adipose tissue. In a clinical 
setting, several parameters can be used to estimates 
central obesity; the most widely used being the perimeter 
of waist circumference (WC), hip ratio (HR) and waist-
HR (WHR). Recently, the waist-to-height ratio, which 
relates waist circumference to height, has also been used 
to identify higher cardiometabolic risk in adults[56-58] and 
children[59,60]. This has advantages compared to the BMI, 
and even with WC and WHR, and a healthy individual 
should maintain a waist circumference to less than half 
their height[61]. All these parameters help to predict the 
risk of metabolic diseases such as T2D[62], and could 
be more effective in the case of CVD[63]. In addition, 
mortality due to any cause was increased with a BMI < 
30 when the subjects have a large WC[64]. Thus, WC and 
WHR help to identify high-risk individuals regardless of 
their BMI[65]. The WC range that estimates mainly central 
adiposity varies with race and it is currently suggested 
that for individuals of the United States > 88 cm in 
women and > 102 cm in men; for the European Union ≥ 
80 cm in women and ≥ 94 cm in men; for Chinese and 
South Asia > 90 cm and for Japanese > 85 cm for both 
women and men[66]. These assessments are used mainly 
in the clinic, but there are others more complex and more 
expensive techniques used in research, which are more 
accurate, such as DEXA, computed tomography (CT), 
and magnetic resonance imaging (MRI). Distribution of 
body fat is evaluated by DEXA by automatic scanning of 
default regions (arms, legs and trunk). The trunk is the 
area bounded by the horizontal line under the chin, side 
edges of the ribs and oblique lines through the femoral 
neck; and leg area includes the area under these oblique 
lines. This measure has a coefficient of variation of 
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approximately 2%[51,52,67]. Central obesity is composed of 
abdominal subcutaneous fat and intraabdominal fat, as is 
seen by MRI and CT. In addition, intraabdominal adipose 
tissue is composed of visceral adipose tissue (VAT) as 
omental and mesenteric fat (intraperitoneal fat) and 
retroperitoneal fat mass[68]. Finally, single-voxel magnetic 
resonance spectroscopy is the gold-standard for ectopic 
fat quantification. Although very similar to MRI, it does 
not give anatomical information in image form, but gives 
information about the chemical composition as it is based 
on chemical shift. The water protons from (-OH) hydroxyl 
groups have a spectral peak at 4.7 ppm (parts-per-
million). However, the triglycerides have the predominant 
protons from the (-CH2)n methylene groups[69,70]. Finally, 
ectopic fat is estimated with accurate methods that 
separate water and fat signals within each voxel (software 
such as jMRUI). Occasionally other techniques have been 
used in determining the ectopic fatty tissue including 
ultrasonography (US), with a highly significant correlation 
between CT and by US[71].

ADIPOCYTE AND ADIPOSITY 
DEVELOPMENT
Adipocyte differentiation
In humans there are two types of well-differentiated 
adipose tissue, which have different distribution and 
functions, and are referred to as white adipose tissue 
(WAT) and brown adipose tissue (BAT) (Figure 1A). 
The WAT is mainly related to the function of deposit of 
surplus energy as triacylglycerol (fat), which could be 
mobilized and offered through hormonal signaling and 
has a tremendous ability to expand; excess fat storage is 
associated with mechanical overload and slow to moderate 
increased risk of metabolic disorders. Mature WAT are 
characterized by the increased expression of transporters 
of glucose sensitive to insulin (GLUT4), and enzymes 
like fatty acid synthase (FAS) and glycerol-2-phosphate 
dehydrogenase[72,73]. By contrast, BAT is involved in 
thermogenesis functions and thus in energy expenditure 
and body weight regulation[74,75]. In mammals, BAT is 
the primary site of thermogenesis without accompanying 
muscle contraction. This function is stimulated by exposure 
to cold or after lipid-rich calorie food, and this process 
is called adaptive thermogenesis[76]. This thermogenic 
function of BAT is mediated by the activation of a specific 
mitochondrial uncoupling protein 1 (UCP1), which 
is ubiquitous in the inner mitochondrial membrane, 
uncoupling electron transport of mitochondrial respiration, 
where the saturation of the production of ATP is dissipated 
as heat (Figure 1B). The presence of functionally active 
BAT in rodents has been known for many years. In 
humans, the first evidence of BAT function was related to 
the control of body temperature after birth and in early 
childhood[77]. However, several data from adipose tissue 
samples together with evidence provided by positron 
emission tomography coupled with computed tomography 
have established the existence of functionally active 

brown adipose tissue in adult humans[78-81]. Furthermore, 
some of these studies have also related data between the 
size of activation of these sites with BAT and lower BMI, 
increased basal energy expenditure and decreased onset 
of diabetes[82]. Different amounts of BAT in adult humans 
can be found in the cervical and supraclavicular[83], and 
are known as canonical BAT. Although brown adipocytes 
are also observed infiltrating skeletal muscle and in 
different areas of WAT[84]. Therefore, a third fat cell or new 
functional adipose tissue is being defined[85,86]. 

Transcriptional signaling of adipocyte formation
Expansion of WAT in ideal weight or in obesity is not 
only the result of hypertrophy and/or hyperplasia of 
adipocytes, but supporting elements like vascular and 
mesenchymal stromal including immune cells, endothelial 
cells, and undifferentiated or adipocyte precursor cells 
(APs) must also be developed. Alterations in vascular 
tissue development and hypoxia is associated with 
adipocyte apoptosis and macrophage infiltration, and 
an appropriate induction of vascular endothelial growth 
factor A in adipose tissue is essential during expandability 
of adipose tissue (Figure 2)[87].

The hypertrophy of WAT only depends on its own 
renewal from APs which remain present during the entire 
life span and after suitable signaling can form different 
mature fat cells (Figure 1A)[88]. In WAT development 
several key transcription factors have been identified 
and among them the binding proteins CCAAT/enhancer 
(C/EBP) and peroxisome proliferator-activated receptor 
(PPAR) should be mentioned. Sterol regulatory element 
binding transcription factor 1 (SREBP1c) has been found 
as a pro-adipogenic basic helix-loop-helix transcription 
factor which activates peroxisome proliferator-activated 
receptor-γ (PPAR-γ) expression[89] and mediates the 
induction of lipid biosynthesis by insulin[90]. On the other 
hand, BAT derived from Myf5 + progenitors paraxial 
mesoderm layer shares a common origin with the 
development of skeletal myoblasts[91]. The development 
of BAT requires that PRDM16 interacts with either 
PPAR-γ coactivator (PGC-1α/b) or CtBPs to activate 
brown genes or the inhibition of several transcription 
factors that induce WAT, respectively[92,93]. In addition, 
it has been shown that bone morphogenetic protein 
7 turn on a complete program of brown adipogenesis 
involving induction of early key regulatory transcription 
to brown cells as PRDM16 and PGC-1α, and increased 
expression of UCP-1 which is characteristic of brown 
cells[94]. Finally, Myf5 was found to drive the expression 
of classical BAT depots in retroperitoneal and anterior 
subcutaneous WATs, and the existence of Myf5 positive 
cells mixed in WAT has been confirmed[95]. The term 
“beige” has been used to describe those cells that 
are morphologically identical to white adipocytes, but 
may be inducible to cells expressing brown adipocytes 
definitive characteristics of UCP1 activity with b-adrenergic 
stimulation[96,97]. Adipose tissue located in the inguinal 
area is seen today as the largest and physiologically 

Paniagua JA. Nutrition, adipose tissue and metabolic syndrome



488 November 15, 2016|Volume 7|Issue 19|WJD|www.wjgnet.com

Embrionic stem cells

Mesenchimal stem cells

BMP-2
BMP-4

Myf5- Myf5+

BMP-7

BAT preadipocytesWAT preadipocytes

↑PPARγ, ↑C/EBPs, ↑SREBP1c
↑Insulin/IGF-1

↑BMP7, ↑BMP8b (p38 MAPK)
↑PRDM16, ↑PGC-1α
↑FGFs, ↑C/EBPb, ↑Insulin/IGF-1
↑UCP-1, ↑Mitocondria

Beige adipocyte

Brown adipocyteWhite adipocyte

Lipicts

Heat

LipictsUCP1

M
at

ur
e

Pr
ea

di
po

cy
te

s

BA
T 

an
d 

W
AT

 d
iff

er
en

tia
tio

n
Th

er
m

og
en

es
is

 B
AT

 m
ed

ia
te

d

SNS control

Catabolic control
  POMC
  Glutamate
  SF1
  MCAR

↑SNS tone
(↑adrenergic)

Liver
Thyroid hormones
Skeletal muscle (physical activity)
Cardiac muscle
b3 adrenergic agonist

↑Glucose uptake ↑Insulin sensitivity
↓Diabetes

↓Fat mass (Lipolisys)

Th
er

m
og

en
es

is
 B

AT
 m

ed
ia

te
d

FGF21
THs
Irisin
Natriuretic

Stomach    Ileum   Pancreas   WAT

Peripheral control

Cold environment
Food Ghrelin

(anabolic)
↑GLP1 ↑Insulin 

(anabolic/
catabolic)

Leptin 
(catabolic)

BAT 
receptos

Glucose 
and FFA

Cortex

b3-AR

Epinephrine
Norepinephrine

BMP8b

IL6

FGF21

↑UCP1
↑[ATP] H+

BMPrll (BMP7)
BMP8b
Fgfr (FGF21)
B3-AR (NE)
THr (T4L)
Irisin
Npr
Vegfr2 (Vegf)
Insulin
Leptin (?)
Others

Heat

Figure 1  Thermogenesis brown adipose tissue (Bat) mediated. A: Adipocytes were developed because non adipocytes cells are unable to store calories as 
fat to meet fuel needs during long periods without eating. If the energy intake is more than energy expenditure, WAT is expanded and leads to obesity. However, 
a second type of adipose tissue, called BAT was developed especially for energy expenditure (thermogenesis). Today, research in identifying the main genes that 
control differentiation, development and activation of BAT is highly active, because, activation of BAT, in detriment of WAT, could have anti-obesity effects, which can 
be utilized to keep the system of fat deposit balanced. In this research, PRDM16, PPAR-γ and PGC-1α, have been identified as the key nodes in the regulation of 
inducible BAT; B: The thermogenic potential of BAT is controlled by the SNS, which densely innervates brown fat depots. In addition, BAT is activated in response to 
cold temperatures, hormones and possibly diet. BAT content and activation is highest in children and decreases with age. BAT activation is decreased in fatness, and 
BAT activity has been inversely correlated to BMI, body fat, and visceral obesity. In humans, BAT amount and activation is higher in women than in men. Of clinical 
relevance, BAT activation is very low in diabetic patients in comparison with non-diabetic subjects. Thyroid hormones play a main role in control of BAT activation, 
therefore the cold-induced enhancement of the enzyme 5’-deiodinase type II activity, which deiodinates thyroxine (T4) to T3. Catecholamines such as norepinephrine 
binds to b-ARs and induce PGC1α through p38 MAPK and finally triggers expression of UCP1. Whereas β1-AR is considered important for proliferation of classical 
brown adipocyte precursors in response to norepinephrine, b3-AR plays a major role in thermogenic function of mature brown adipocytes. Another signal, Irisin 
hormone which comes from muscle to fat tissue, is able to induce a robust browning programme, and mediates the beneficial effects of exercise and could reduce 
diet-induced obesity and insulin resistance. A more generalized program in the control of adipose tissue is conducted by FGF21 through regulating lipolysis in WAT as 
well as increasing substrate utilization by increasing fatty acid oxidation in the liver. Last, beige fat cell functions include either a like to “WAT” when energy balance 
is exceeded, or a like to “BAT” in response to many stimuli similar to BAT activation. WAT: White adipose tissue; BAT: Brown adipose tissue; PRDM16: PR domain 
containing 16; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PGC-1α: Peroxisome proliferator-activated receptor γ coactivator 1α; SNS: Sympathetic nervous 
system; BMI: Body mass index; FGF21: Fibroblast growth factor 21.
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Figure 2  Dysfunctional adipose tissue. Early central obesity is associated with a low-grade chronic inflammatory state characterized by slow infiltration of macrophages 
which are an important source of inflammation of this adipose tissue[275,276]. Several macrophage subtypes can be found, and simply put, are divided in pro-inflammatory M1 
or alternatively activated M2, although in vivo studies reveal a spectrum of macrophage phenotypes[277]. Adipocytes and immune cells such as T cells and macrophages 
participate in the activation and production of inflammatory cytokines[170,275,278,279]. The M1 macrophages mainly found in obesity, are induced from precursor M0 macrophages 
by stimulation of components of bacteria (lipopolysaccharide) and type 1 T-helper (Th1) inflammatory cytokines like IFN-γ and TNF-α. The M2 macrophages are activated by 
type 2 (Th2) cytokines such as IL-4 and IL-13. The M2 macrophages are abundant in adipose tissue of lean subjects and appear to be involved in remodeling, tissue repair, and 
maintenance of insulin sensitivity through the production and expression of IL-10, IL-1 receptor antagonist, and arginase-1. Whereas M1 macrophages use glucose for energy, 
M2 macrophages activate the b-oxidation of fatty acids[277,280]. Finally, M1 macrophages are the major source of inflammatory cytokines including TNF-α which inhibits adipose 
cell differentiation by activating Wnt signaling and suppressing expression of PPAR-γ transcription factor essential for the development and function of adipocyte, and reducing 
the effect on stored triglycerides[281,282]. The subcutaneous adipose tissue will continue to expand to an equilibrium point. When this capacity is exceeded, glucose and lipid 
uptake begins to decline and insulin levels are raised to maintain serum glucose in the normal range[215]. In addition, when WAT is unable to expand (inflexibility), associated with 
insulin resistance state, a continuous release of FFA to interstice begins, generating a systemic lipotoxic effect in muscle, liver, etc., (lipotoxicity). The adipose tissue itself begins 
a slow process of low-level chronic inflammation (macrophages, lymphocytes, etc.) which increases local release of TNF-α and IL-6[166]. TNF-α and IL-6 levels are inversely 
related with peripheral and hepatic glucose-uptake which is insulin-mediated[283]. The liver keeps excess uptake of FFA in serum to capacity by joining with glycerol (TAG) and 
slowly fatty liver is developed (NAFLD). It has been shown that peripheral fatty acids contribute  approximately 60% of total TAG stored in the liver, whereas the novo lipogenesis 
in the liver is  approximately 26% and  approximately 15% is from the diet[284]. On the other hand, leptin levels respond directly to adipose expansion, while adiponectin levels 
tend to decrease when metabolic syndrome is developed. The elevated leptin levels should increase lipolysis in non-adipose tissues, decreasing excess fatty acids in these 
cells. However, this action of leptin may be partially blocked by the anabolic effect established by hyperinsulinemia, settling down leptin system dysfunction (peripheral leptin 
resistance)[115]. In addition, the decreased adiponectin levels are inversely related to peripheral glucose uptake and directly related with progressive development of chronic liver 
disease by fat infiltration. Adiponectin exerts a protective action on liver fat accumulation, favoring lipolysis by promoting the action of CPT-1, while interfering with the action of 
FAS, ACO and TNF-α, and decreasing the expression and action of CD-36 protein that promotes the transport of fatty acids[129]. Finally, both leptin and adiponectin seem to 
regulate the deposition of fat in insulin-sensitive tissues by increasing fat oxidation. IFN-γ: Interferon-γ; TNF-α: Tumor necrosis factor-α; IL: Interleukin; PPAR-γ: Peroxisome 
proliferator-activated receptor-γ; WAT: White adipose tissue; FFA: Free fatty acids; NAFLD: Non alcoholic fatty liver disease; CPT-1: Carnitine palmitoyltransferase-1; FAS: Fatty 
acid synthase; ACO: Acyl CoA carboxylase.
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most relevant fat depot capable of inducing brought 
beige adipocytes[96]. In addition, it has been observed 
that in this fat depot the beige mature adipocytes can 
be interconvert in adipocytes with characteristics typical 
of white and brown adipocytes, without the need for 
“de novo” cell differentiation from precursors[97]. Thus, 
physiologically this could mean that the rate of lipid 
storage or lipid oxidation could be adapted and adjusted 
in response to external stimuli such as a decrease or 
increase in temperature, but it still requires further 
investigation.

EFFECT OF HORMONES AND 
ADIPOKINES ON ADIPOGENESIS
The adipose tissue can be expanded and developed by 
many factors such as hormones, growth factors, factors 
produced by adipose tissue itself (adipokines) and specific 
effects induced by nutritional factors and some phar-
macological components (Figure 1B).

Hormones and growth factors
Insulin: In “in vitro” studies, a mixture of dexameth-
asone, isobutylmethylxanthine and insulin is regularly 
used to generate well-differentiated adipose tissue, 
insulin being the most potent of the three factors. Insulin 
within the physiological range induces lipogenesis and 
insulin receptor is required for adipocyte differentiation[98]. 

Insulin regulates brown preadipocyte determination 
through a necdin-E2F4 interaction that represses PPAR-γ 
transcription via a cyclic AMP response element binding 
protein-dependent pathway[99]. Hyperinsulinemia either 
undergone exogenously (treatment) or endogenously 
(secretion), is clearly related with weight gain, which is a 
feature of the MetS. However, several molecules such as 
TNF-α, leptin, resistin, interact and block multiple steps of 
insulin signaling and antagonize its effects on adipocytes. 

Growth hormone and insulin like growth factor 1: 
Growth hormone (GH) is not only involved in postnatal 
somatic growth to adulthood, but also has a role in 
the regulation of metabolic substrates in the control of 
body composition and body fat distribution, through the 
combination of lipolytic and anabolic effects[100]. In fact, 
patients with GH deficiency have a smaller number of 
adipocytes which also has less volume, and these are 
partially normalized with GH replacement therapy[101]. 
GH is involved in the conversion of preadipocytes into 
mature adipocytes, and subsequently plays a role in the 
maturation of adipocytes which makes them sensitive to 
insulin and IGF-I[102]. The effect of GH on adipogenesis 
seems mainly mediated via stimulating Stat5A/5B 
inducing the transcriptional activity of PPAR in cooperation 
with C/EBPb/δ[103]. 

Thyroid hormones: Thyroid hormones are involved in 
the growth and maturation of several organs and tissues 
during fetal and neonatal development[104]. Finally, in 

adult life, thyroid hormones regulate energy metabolism 
and function of organs such as the adipose tissue, liver, 
heart, skin tissue, muscle or adipose tissue. It has been 
observed that thyroid function in BAT is mediated by the 
C/EBPs signaling which induces the expression of thyroid 
hormone receptor and PGC1α (PPAR-γ coactivator) and 
deiodinase (D2) activity determines grade of thyroid 
function “in situ”[105,106].  

Glucocorticoids and sexual hormones: In humans, 
infusion of hydrocortisone for 6 h increased levels of 
circulating FFA, and several mechanisms for the lipolysis 
of glucocorticoids have been observed[107,108]. In addition, 
dexamethasone is involved in the expression of PPAR-γ 
transcription factors and C/EBPδ, and decreases the 
expression of pref-1 which is a negative regulator of 
adipogenesis[109]. Therefore, the central obesity phenotype 
is associated mainly with the consumption of peripheral 
adipose tissue (lipolysis), and it is observed in human 
hypercortisolism situations as in Cushing’s syndrome. 
The adrenal glands and gonads are the main primary 
source of serum levels of steroid hormones. However, 
adipose tissue has a full arsenal of enzymes that induce, 
interconvert, and inactivate peripheral steroid sex 
hormones[110]. The regulation of glucocorticoids levels is 
critical for the maintenance of homeostasis and the activity 
in some tissues of 11-b-hydroxysteroid dehydrogenase 
1 and 2 (11 bHSD1 and 2) interconvert the active form 
of cortisol in other inactive product called cortisone and 
vice versa[111]. This enzyme is highly expressed in adipose 
tissue and an increase in its activity seems involved in an 
increased level of visceral adipose tissue[112,113]. Moreover, 
the distribution of body fat is characteristically different 
between men and women; while they are sexually active, 
resulting in so-called “android or apple” obesity with 
abdominal fat depot and “gynoid or pear” obesity where 
fat accumulates predominately in the buttock. However, 
the actions that sex steroids have on adipogenesis are 
poorly known. In addition, the main determinants of the 
action of sex steroids is given by free circulating levels of 
the hormone in question and the degree of expression in 
the target organ receptors. The prereceptor tissue-specific 
metabolism of steroid hormones is also involved in its 
function. Adipose tissue and preadipocytes have a great 
activity either cytochrome P450-dependent aromatase 
and 17bHSD enzymes. Aromatase regulate the rate of 
formation of androgens into estrogens: Androstenedione 
to estrone and testosterone to estradiol. Whereas, the 
17bHSD is involved in the production of more active forms 
of testosterone and androstendiona from their weaker 
precursors, and the rate 17B-HSD/aromatasa in adipose 
tissue is correlated positively with central adiposity[110,114]. 
Finally, many men with insulin resistance, T2D or MetS 
present low testosterone concentrations with high or low 
gonadotropins (25% and 4%, respectively). 

Adipokines: The developed and mature adipocyte 
acquires the ability to synthesize and release many 
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proteins, known generally by Adipokines. These proteins 
and hormones are involved in energy homeostasis 
by regulating energy intake and basal metabolism. 
Therefore, adipose tissue is implicated in the metabolic 
control of energy substrates such as glucose and lipids, 
and interacts with several hormonal systems. The 
molecules produced by adipose tissue act remotely 
(endocrine) and locally as paracrine and autocrine on 
stroma and other components of the adipose tissue 
(blood vessels, inflammatory cells, etc.) and also other 
tissues such as muscle. All these actions will contribute in 
the regulation of the different adipose tissue depots, for 
expanding the size of peripheral adipose tissue or in fat 
redistribution to other depots. 

In obese and insulin resistant patients increased 
levels of some adipokines (e.g., leptin, resistin) are 
often observed while others such as adiponectin levels 
are typically decreased[115] (Figure 2).

Major adipokines
Leptin: Leptin is specifically secreted by fat cells whose 
primary function assigned was to establish an adiposity 
signal between the amount of developed adipose tissue 
and satiety centers in the brain completing a negative 
feedback loop[116,117]. People who lose weight following a 
low calorie diet usually decrease circulating leptin levels. 
This decrease in leptin appears to mediate reversible 
decrease in thyroid activity, sympathetic tone, and 
a decrease in basal energy expenditure[118]. Treating 
leptin deficiency with recombinant leptin reduces food 
intake and body weight[119]. Therefore, in subjects 
with very low levels of serum leptin, the recombinant 
leptin treatment also improved several abnormalities 
including infertility, lipodystrophy and impaired glu-
cose metabolism and impaired immunity[120-123]. The 
expression and release of leptin is controlled by several 
hormones and factors. Therefore, appears to be 
stimulated by insulin, glucocorticoids, TNF-α, estrogens, 
and C/EBPA; by contrast, is decreased by androgens, 
b3-adrenergic activity, GH, free fatty acids, and PPAR-γ 
agonist[124]. The action of leptin is essential for energy 
metabolism, but is also involved in the mobilization 
of lipids from different fat depots and may be related 
to the protection of some tissues on lipotoxicity syn-
drome[125,126]. Thus, lipid oxidation in cells that have this 
capacity (mitochondria) could be increased through the 
signal of leptin and could reduce excessive fatty acids 
and protect against lipotoxicity in the liver, pancreas, 
heart, kidney, and muscle tissue (Figures 2 and 3).

Adiponectin: Adiponectin is produced specifically in 
mature adipocytes and RNA abundance is higher in 
peripheral adipose tissue compared with visceral adipose 
tissue[127]. Adiponectin receptors are G protein-coupled 
and have high expression in muscle and liver. Adiponectin 
is involved in lipid oxidation in skeletal muscle and 
in the liver, and moreover reduce hepatic production 
glucose load and postprandial hyperglycemic[128,129]. An 

inverse relationship has been found between plasma 
adiponectin levels and the development of obesity, 
insulin resistance and T2D[130]. However, conflicting data 
have been observed between adiponectin levels and the 
development of cardiovascular disease[131]. Adiponectin 
treatment decreases TNF-a plasma levels and its 
hepatic production. Adiponectin was able of improving 
hepatomegaly, steatosis, and alanine aminotransferase 
levels related with nonalcoholic obese subjects (Figure 
2)[129]. Finally, adiponectin levels is early decreased in 
insulin resistance syndrome, even before the onset of 
obesity, and adiponectin administration improves IS[132]. 

TNF-α: TNF-α is a transmembrane protein released 
mostly by activated macrophages, and also by several 
other cell types including lymphoid cells, cardiac myocytes, 
endothelial cells, adipose tissue, etc.[133-135] (Figure 2). 
Therefore, TNF-α is regarded as an adipokine implicated 
in process of local and systemic inflammation and in 
proliferation and differentiation of the cells. TNF-α exerts 
its effects by binding two receptors, TNFR1 (TNF type 
1 or CD120a) and TNFR2 (TNF type 2 or CD120b)[136]. 
Both TNF-α gene and its receptors are expressed and 
modulated in adipocytes and is expressed at higher 
levels in WAT[127]. Some metabolic effects induced by 
TNF-α implicates it in inhibiting differentiation to mature 
adipocyte. This in turn leads to insulin resistance, and 
finally an increase of free fatty acids could result[137,138]. In 
this way, TNF-α treatment decreased the expression of 
PPAR-γ and repressed genes involved in lipid and glucose 
uptake[138,139].

IL-6: IL-6 is secreted by T cells and macrophages 
involved in the immune response (Figure 2). Smooth 
muscle cells in blood vessels can also produce IL-6 as a 
pro-inflammatory cytokine. Finally, IL-6 is synthesized by 
adipocytes and appears to be associated with elevated 
levels of CRP and inflammatory states found in obese 
patients[140]. An important part of the total concentration 
of IL-6 (approximately 1/3) is produced in adipose tissue. 
However, the expression and release of IL-6 is two to 
three times higher in visceral adipose tissue compared 
to peripheral adipose tissue[127]. Finally, circulating lev-
els of IL-6 have been found to be directly linked to 
both obesity and insulin resistance[141]. IL-6 inhibits 
the activity of lipoprotein lipase (LPL) and reduces the 
differentiation of human preadipocytes, both associated 
with adipogenesis[142].

Others main adipokines
Resistin: Resistin is a cytokine whose role is not well 
defined, although firstly was related to obesity, insulin 
resistance and development of T2D[143]. 

Visfatin: Visfatin is mainly synthesized in the abdominal 
adipose tissue of humans but not by peripheral adipose 
tissue, and the first role appeared to have insulin-
mimetic actions[144,145]. However, the relevance of visfatin 
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Figure 3  Adipose tissue expandability and metabolic syndrome. After a long period of overeating with positive energy balance, associated with increased 
hormones such as insulin, adipose tissue responds by increasing its storage capacity, which is determined by a number of factors. Individuals with a higher capacity 
for storing fat, mainly when peripheral WAT is expanded (WAT flexibility), most subjects will remain metabolically normal for a longer period, despite obesity 
developing. These subjects are observed to be metabolically healthy (MHO). Chronic inflammatory response leads to dysfunctional adipose tissue with increased 
local and endocrine secretion of acute phase reactants and inflammatory signaling pathways[285]. Abnormal cytokine and adipokines production is related to insulin 
resistance, hyperglycemia, altered lipid profile and cardiovascular diseases[115,286,287]. Insulin resistance slowly results from increased accumulation of lipids in 
other nonadipose tissues such as muscle (lipotoxicity) due to enhanced release of fatty acids from hypertrophic and hyperplasic adipocyte cells. In addition, when 
adipocytes achieve their maximal storage capacity, they begin to alter their adipokynes secretion profile. Therefore, a proinflammatory milieu with elevation in IL-6 and 
TNF-α and altered adipokines profile, with decreased adiponectin and increased leptin levels, with peripheral leptin resistance, in a dysfunctional adipose system is 
observed. This suggests that the limitation in storage capacity could be necessary and even precedes the development of metabolic factors. Ectopic lipid accumulation 
in non-adipocyte cells causes lipotoxicity in these organs and tissues, including inflammation and finally apoptosis. Thus, lipotoxicity in b-cell could decrease beta 
cell mass (dysfunction of b-cell secretion) and would cause diabetes. Increased fat in liver leads to hepatic steatosis (NAFLD) and steatohepatitis (NASH) and would 
cause hepatic dysfunction, in the heart would cause myocardiac dysfunction, in the endothelial fatty streak would be precursor of generalized arteriosclerosis, etc. 
At what point the adipose tissue begins to fail is likely to be determined by genetic and epigenetic factors. However, the question is: Can storage capacity in WAT 
be enhanced to meet an increased demand[288]? So far, in human trials, the PPAR-γ agonists (TZDs), that remove fat from central deposits toward more favorable 
peripheral deposits, have been shown to improve lipid profile, insulin-sensitivity, and reduce diabetes and NAFLD[269]. WAT: White adipose tissue; MHO: Metabolically 
healthy obese; IL: Interleukin; TNF-α: Tumor necrosis factor-α; NAFLD: Non alcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; PPAR-γ: Peroxisome 
proliferator-activated receptor-γ; TZD: Thiazolidinedione. 
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in the regulation of glucose metabolism is not clear[146]. 

Omentin 1: Plasma levels and omentin gene expression 
in visceral adipose are decreased in obesity[147]. Omentin 
1 is decreased in obese women with polycystic ovary 
syndrome (PCOS), both glucose and insulin negatively 
regulate omentin-1 levels ex vivo and in vivo, and women 
with PCOS who were treated with metformin increased 
serum omentin levels[148,149]. 

Effect of fatty acid metabolism and enzymes on 
adipogenesis
Fatty acids (FFA) are energy-rich molecules that play a 
role in metabolism. The excess of calories ingested as 
fat, protein and carbohydrates, and unspent, are stored 
as triglycerides (TG; FFA plus glycerol) in mature white 
adipocytes. They are also an integral part of the cell 
membrane, conferring functions in fluidity and in the 
expression of receptors and transporters. In addition, 
FFA have hormone-like actions and can influence gene 
expression in preadipocytes, affecting adipogenesis 
through proliferation and differentiation[150]. In humans, 
food is an important source of FFAs, but biosynthesis 
could supply most of the fatty acids requirements[151]. 
However, humans are unable to synthesize certain PUFA. 
Therefore, some precursor in the diet are essentials 
for two series of PUFA, linoleic acid series (ω-6 series) 
and linolenic acid (ω-3 series), that are related with 
decreased CVD. Today, most diets in the world provide 
enough ω-6 and too little ω-3, with an increased ratio ω-6:
ω-3. By contrast, diets with excess saturated fatty acids 
(and unsaturated trans) have been associated with a 
significantly increased risk of CVD.

In differentiation and maturation of adipocytes, insulin 
has a definitive influence increasing the expression 
and activity of LPL, which is needed for an effective FFA 
uptake and storage. Adipocytes release and express 
apo CII and apo CIII by regulating extracellular LPL 
activity[152]. In addition, fatty acid binding proteins (FABPs) 
are cytoplasmic proteins that carry out intracellular 
transport of FFA[153]. It appears that the expression of 
fatty acid binding protein-4 (FABP4) is involved in the 
balance between lipogenesis and lipolysis and in the 
process of differentiation of preadipocytes. Therefore, 
it is likely that FABPs serve as a critical link between 
lipid metabolism, hormone action and cellular function 
in adipocytes and other cells and thus contribute 
to systemic energy homeostasis involving glucose 
metabolism[154]. 

In humans, “de novo” synthesis of straight-chain fatty 
acids is formed predominantly in the liver where acetyl-
CoA is formed from pyruvate, and to a lesser extent in 
adipose tissue. FFA can be endogenously synthesized 
from acetyl-CoA and malonyl-CoA precursors through 
two enzymatic steps, including acetyl-CoA carboxylase 
(ACC) and FAS. The ACC controls six recurring reactions 
until production of short fatty acids and then the fatty 
acids are elongated until 16-carbon palmitic acid is 

produced by the action of FAS (Citosol). Humans can 
synthesize nearly all fatty acids required from palmitic 
acid by combining several mechanisms of oxidation 
and elongation[155]. In mammals seven Elovl family 
enzymes (Elovl1-7) have been identified, and these 
enzymes are the limitations in control of production by 
fatty acid elongation[156]. The enzyme activity of Elovl3 
is transcriptionally regulated by PPAR-γ, and in turn 
the levels of VLCFAs (C18: 1 and C20: 1) produced 
by the expression of Elov13 activate PPARγ. Therefore 
Elovl3-PPAR activity is implicated in the regulation 
of adipogenesis[157]. Saturated fatty acids are amply 
available from the food by humans, thus FAS enzyme 
has been shown to have less importance. However, 
the malonyl-CoA levels are determined by the rate of 
synthesis by ACC and FAS-mediated catabolic rate, 
and appear to be an important energy status sensor 
in the hypothalamus in the metabolic control of body 
weight[158]. Moreover, in the process of differentiation of 
preadipocytes to mature adipocytes a lower activity of 
FAS has effects reducing adipose tissue[159]. Finally, in 
the process of synthesis of triglycerides in adipose cells, 
several enzymes have been observed with an interest 
in adipogenesis[160]. The levels of mRNA and protein 
of diacylglycerol acyltransferase 1 (DGAT1) increase 
during the process of differentiation of preadipocytes. 
DGAT1-deficient mice are resistant to diet-induced obesity 
associated with a higher energy expenditure. While over-
expression of DGAT1 resulting in increased adipose tissue 
without affecting IS, but increased the secretion of TNF, 
which interferes with insulin signaling[161]. 

OBESITY AND LIPOTOXICITY 
SYNDROME
After absorption in intestine and after synthesis in the liver 
triglycerides (TG) are packed in specialized lipoproteins 
[chylomicron and very like density lipoprotein (VLDL)]. 
They are transported in a network between different 
locations such as the digestive system, liver, adipose 
tissue and other tissues. The formation of TG can also be 
considered a cellular detoxification process by controlling 
the levels of diacylglycerol and the input and output flows 
of FFA and acyl-CoA[162]. In this regard, droplets containing 
TG were found in all investigated cells, and even brain 
tissue has this capacity to form TG. These fat droplets 
are surrounded by a monolayer of phospholipids hooked 
by a specific protein called Perilipin (ADRP) which appear 
to regulate, and are rate limiting factor in its formation, 
growth and dissolution[163].

Downloading and uptake of free fatty acids in non 
adipose tissues typically is coupled to its necessity. 
During periods of fasting and physical exercise should be 
increased the lipolysis, that is mediated by suppression 
of plasma insulin and elevation of contrainsulin hormones 
(glucagon, cortisol, etc.), generating a coupled fuel 
delivery. Thus, for an optimal mobilization and storage of 
lipid an efficient adipose tissue is required. By contrast, 
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after a prolonged overfeeding state, fatty acid load 
offered may exceed the storage capacity of adipose tissue 
(inflexibility) (Figure 3). Nuclear receptor PPAR-γ is a key 
gene that regulates adipogenesis and lipid storage, but it 
appears that is also needed for the control of the lipolysis, 
dysregulation of which is a prominent characteristic of 
obesity-induced insulin resistance in humans[164]. In 
addition, the expression of leptin receptor is found in 
several tissues in the body involving leptin actions in 
many different sites, including as be a mediator of energy 
expenditure[124]. Leptin secretion rises in parallel with 
fat expansion in adipocytes and it has been proposed 
that this prevents lipotoxicity by minimizing ectopic 
accumulation of lipids into nonadipocytes because leptin 
induced b-oxidation increasing transcription of PPAR-α. 
Therefore, excess fatty acids will increase activation of 
PPAR-α which is a transcription factor of lipolytic enzymes 
such as carnitine palmitoyl transferase-1 and acyl CoA 
oxidase. Lipolysis is forced by increasing b-oxidation 
and uncoupling proteins activity, which corresponds 
with the observed increase in heat and finally would 
protect these tissues from the accumulation of fatty 
acids[165,166]. However, although insulin treatment acutely 
increases leptin levels, it has been observed that patients 
with insulin resistance syndrome have lower mRNA 
leptin abundance in adipocytes than IS patients[115,167]. 
In addition, a leptin resistance syndrome in humans 
for central hypothalamic action has also been found. 
Finally, this system of chronic increase of b-oxidation 
can already generate oxidative stress “per se” and an 
inflammatory condition, which can be harmful to these 
tissues. On the other hand, adiponectin have a key role 
like insulinsensitizing, anti-inflammatory, anti-apoptotic 
and pro-angiogenic properties increasing the metabolic 
flexibility of adipose tissue, i.e., to make adipose tissue 
more efficient at discharging FFAs when are required 
and upgrade the rate of FFA re-esterification during the 
postprandial state[168]. Finally, in insulin resistant patients 
early lower serum adiponectin levels that could not 
adequately prevent all these processes are observed[115]. 
When these mechanisms are exceeded, an accumulation 
of fatty acids occurs, and its derived metabolites, which 
generate lipotoxicity and increased cell death in those 
tissue not prepared to accumulate this excess of lipids 
such as muscle, b-cells pancreatic, liver, heart, kidneys, 
etc.[126].

FROM INSULIN RESISTANCE TO OTHER 
CARDIOVASCULAR RISK FACTORS
In conditions of overnutrition the adipose tissue (AT) 
expands to levels of inflexibility (adiposity), and in this 
state the subject presents a longer postprandial state 
which leads to hyperinsulinemia, probably the first step 
in this altered dysfunctional metabolic system (Figure 
4). Thus, a lower capacity of disposal and storage of 
fatty acids associated with an increased lipolysis by AT, 
and dysfunctional pattern of adipocytokine release (e.g., 

decreased adiponectin, and increased leptin, TNF-α 
and IL-6), may result in inflexibility of AT and indirectly 
induce redistribution of fat towards undesired and toxic 
lipids ectopic accumulation. Therefore, when central 
obesity is slowly being developed, it is observed that 
hyperinsulinemia and hyperglycemia also progress slowly 
in postprandial state and later a global hyperglycemia 
(T2D), hypertriglyceridemia, hypoalphalipoproteinemia, 
hypertension and fatty liver (dysfunctional metabolism) 
are developed. When a combination of any of these 
factors cluster together in the same individual the con-
cept of MetS is established[169]. 

The elevated levels of TG are directed toward white 
adipose tissue and changes occur in adipocyte size, 
which leads to changes in its function, and an increase 
in secretion of TNF-α and Leptin, which stimulates the 
secretion of monocyte chemotactic protein (MCP-1)[170]. 
This attracts more macrophages to the adipose tissue. 
Increasing leptin secretion also stimulates macrophage 
transport to adipose tissue[171] and macrophage adhesion 
to endothelial cells[172]. Whatever the stimulus for attracting 
these macrophages, once present and the recruitment 
is active, the cytokine production of these macrophages 
interfere with the normal function of adipocytes (adi-
pose tissue dysfunction)[173]. When an inflammatory 
environment is established in the adipose tissue, the 
lipid metabolism is altered, initiating postprandial hyper-
triglyceridemia, because the liver overproduction of VLDL 
is not removed in time and remains for longer in plasma 
(postprandial hyperlipidemia). Further, because lipolysis 
from peripheral adipose tissue is extended, the interstitial 
content of free fatty acids increases, which can be taken 
up by the adjacent muscle cells (↓ IS) or again transferred 
into lipoproteins to the plasma and could be taken 
up by the liver (↑ VLDL production) and other organs 
(lipotoxicity). However, not all obese individuals necessarily 
develop metabolic complications, as some remain insulin 
sensitive and do not develop fatty liver[115]. On top of all 
these factors, the link between obesity and associated 
metabolic abnormalities seems to be better related to the 
topography, anatomical distribution and/or the functional 
peculiarities of the adipose tissue, a phenomenon which 
seems to be more relevant in patients with relatively 
normal weight (Figures 2 and 3). 

In obese people elevated triglyceride levels, that 
are independently associated with an increased risk of 
cardiovascular disease, are often observed. The liver 
frees VLDL which are carriers of triglycerides, cholesterol 
esters and phospholipids, and the hydrolysis of VLDL-
TG macromolecule provides cholesterol to peripheral 
tissues and triglycerides mainly to adipose tissue. The 
metabolism of triglycerides in adipose tissue is affected 
by adipokines (leptin and adiponectin) and other factors 
such as LPL and cholesterol ester transferase protein 
(CETP)[174]. Moreover, the LDL molecules remain longer 
in plasma, and slowly lose some cholesterol and become 
small and dense particles, which make these particles 
more susceptible to changes in oxidation and glycosilation 
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(ox-LDL, gly-LDL, etc). The removal and phagocytosis of 
oxidized and modified forms of LDL cholesterol (LDL-C) 
by macrophages located in blood vessel walls is a main 
event in the development of atherosclerosis[175]. Under 
these conditions, also possibly being affected by high 
insulin levels and increasing macrophage infiltration, 
which when activated produce proinflammatory cytokines 
and adhesion molecules (CRP, TNF-α, IL-6, VCAM, ICAM 
and MCP-1), blood vessels endothelial cells undergoes 
hypertrophy[176]. In early obese T2D patients, even 
serum ox-LDL levels are influenced by short-term serum 
glucose variations and flow-mediated endothelium-
dependent dilation was decreased and inversely related 
with increments of circulating ox-LDL levels (endothelial 
dysfunction)[177]. Finally, HDL, which removes surplus 
cholesterol in peripheral tissues and moves it to the liver 
either to reuse or excretion, what is recognized as reverse 
cholesterol transport (RCT), are also lowered by effects 

at various points[178]. Therefore, elevated triglycerides and 
decreased HDL-C, also so-called atherosclerotic profile, 
are considered a risk factor for CVD, independent of LDL-C 
levels[174,179-183]. The RCT begins when small precursors 
of HDL (nascent Apo AI/HDL, pre-b HDL) accept the 
cholesterol and phospholipids through interaction with 
ATP-binding cassette (ABC) transporters ABCA1 and 
ABCG1[184]. ApoA-I is released mainly by the liver and 
small bowel as lipid-poor apoA-I and nascent phopholipid-
rich cholesterol-poor HDL particles. In humans, various 
mutations in the ABCA1 gene outcome in lowered 
plasma HDL-C levels and great storage of cholesterol in 
macrophages located in lymph tissue, and they have 
an enhanced risk of atherosclerotic events. The liver 
X receptors LXRα (NR1H3) and LXRb (NR1H2) have 
a key role in the control of cholesterol metabolism. 
Storage intracellular cholesterol levels results in increased 
cholesterol oxidized forms (oxysterol) which are 
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Figure 4  Insulin resistant syndrome and lipid metabolism. When obesity is developing, early abnormalities are observed at this time including hyperinsulinemia 
and low grade of proinflammatory state (↑ cytokines and PCR-hs), increase liberation of free fatty acids from adipose tissue (↑ lipolysis) and altered release of 
adipokines (↓ adiponectin, ↑leptin with leptin resistance). In some subjects, fatty liver develops later and consequently affects some functions of the liver. These 
include an early altered postprandial state (increasing glucose and triglyceride-rich VLDL particles), but finally these finding are observed in fasting state[289]. The VLDL 
particles undergo reduction by LPL and triglycerides are taken up by adipose tissue. The final result is the increase of cholesterol-rich small and dense LDL particles 
in serum. These LDL particles are highly susceptible to modifications like oxidation and glycation and the result is the increasing levels of ox-LDL, gly-LDL and the 
generation of antibodies to ox-LDL[190]. Finally, modified LDL are phagocytosed by macrophages in endothelial blood vessels and an inflammatory pattern that alters 
endothelial function initiating arteriosclerosis begins[177]. On the other hand, through ABC1 ligand the lipid efflux from peripheral cells to start the reverse transport of 
cholesterol is mediated. Mature HDL3 are generated from lipid-free apo A1 or lipid-poor pre-b1-HDL as the precursors, and LCAT-mediated sterification of cholesterol 
generates mature HDL3 and HDL2[189]. In T2D insulin-resistant patients, after adequate metabolic control the HDL3 cholesterol and APO A1 levels were increased. 
These findings were associated with a higher specific binding activity of HDL3 in those patients that showed improved insulin resistance[190]. Cholesterol efflux capacity 
has a strong inverse association with carotid intima-media thickness and was inversely associated with the incidence of cardiovascular events in a population-based 
cohort[188,290]. LCAT-mediated cholesterol esterification generates large spherical HDL2 particles, but large HDL2 can be converted in turn to small HDL3 upon CETP-
mediated transfer of CE from HDL to apoB-containing lipoproteins, interfering with reverse cholesterol transport. Finally, SR-BI mediates the selective uptake of 
cholesteryl esters from HDL particles into mainly liver and steroidogenic organs[291]. VLDL: Very light density lipoprotein; LPL: Lipoprotein lipase; ox-LDL: Oxidized-
LDL; gly-LDL: Glycated-LDL; ABC1: ATP-binding cassette transporter 1; LCAT: Lecithin cholesterol acyltransferase; CETP: Cholesteryl ester transfer protein; SR-BI: 
Scavenger receptor class-B, type I.
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endogenous ligands for LXRs; therefore, it is as sensors 
to keep cholesterol at suitable levels and to equilibrate it 
in all sites of body[185]. The LXR system could intervene 
in gene expression, controlling the efflux of cholesterol 
from peripheral cells (macrophages), the elimination of 
cholesterol from the liver, and the regulation of cholesterol 
absorption in the small bowel[186,187]. Although the efflux 
of cholesterol from macrophages is a small part of reverse 
cholesterol flux, it is the most significant component of 
atheroprotection. Thus, both plasma HDL cholesterol level 
and the ability to efflux are highly significant indicators 
of cardiovascular disease status[188]. In obesity HDL 
functions change dramatically during acute and chronic 
inflammation of adipose tissue, and changes in quality 
of HDL can contribute to the failure of atheroprotective 
capacity, and decreased efflux capacity in patients with 
MetS and diabetes have been shown[189]. In addition, 
after adequate metabolic control of diabetes in T2D 
insulin resistant patients, the HDL3 cholesterol and APO 
A1 levels, directly associated with higher specific binding 
activity of HDL3, were increased[190]. Moreover, LCAT 
(lecithin cholesterol acyl-transferase) enzymes bound 
to HDL particles play an important role in the change 
from nascent to mature HDL. LCAT converts free and 
unesterified cholesterol (form of efflux) in cholesteryl ester, 
a hydrophobic form of cholesterol (form of transport), that 
make particles of HDL more spherical and mature. The 
mature HDL2 and HDL3 particles in plasma are constantly 
remodeled by lipase and interact with other lipoproteins 
through lipid transfer. This can affect the normal reverse 
transport of HDL cholesterol to its routes of removal (mainly 
liver). Therefore, the CETP mediates exchange of HDL 
cholesteryl ester (CE) with VLDL-triglycerides lipoproteins, 
and this result in a CE reduction with higher amount of TG 
in HDL lipoproteins (Figure 4). Thus, in clinical situations 
of obesity, like insulin resistance and T2D, where VLDL 
particles are frequently increased (hypertriglyceridemia), 
HDL cholesterol levels are inversely lowered. In addition, 
HDL has a variety of anti-atherogenic properties apart 
from efflux of cholesterol and RCT. It improves endothelial 
function, inhibits thrombosis and has powerful antioxidant 
and anti-inflammatory effects. 

Last, most patients with features of MetS have 
increased blood pressure. Several contributing factors 
such as hyperinsulinemia increases the reabsorption of 
Na+ and also activates the sympathetic nervous system. 
In addition, releasing factors from adipose tissue could 
stimulate aldosterone secretion independently of angio-
tensin Ⅱ, K+ or ACTH[191]. Furthermore, local source of 
angiotensin II in adipose tissue may also be raised in 
obese hypertensive subjects establishing the participation 
of adipose-tissue renin-angiotensin system in insulin 
resistant syndrome[192]. 

FROM OBESITY AND INSULIN 
RESISTANCE TO METS
MetS was referred to as a group of related metabolic 
disorders for the first time in 1920 by Kylin. Decades 

before of the introduction of measurements with specific 
methods for insulin, Himsworth (1936) suggests that 
diabetes could be found two types, what he termed 
“insulin-sensitive” and “insulin-insensitive” types. Later, 
Reaven[193] (1988) observed that several risk factors 
(dyslipidemia, hypertension, hyperglycemia) commonly 
cluster together in insulin resistant subjects (Figure 4). 
He described it and underscored their clinical importance 
in their Banting lecture, and he used the name “Syndrome 
X” but obesity was not including in their definition. Today 
it is known as “MetS“ defined as a “set of metabolic 
disorders and cardiovascular risk factors, which foresee 
a high risk of developing diabetes and CVD”. The more 
clinical definition was advanced by Grundy[194] in 1999, 
who described MetS as “a set of metabolic disorders, many 
of which promoted the development of atherosclerosis 
and increase the risk of CVD”, and were established in the 
national cholesterol education program’s adult treatment 
panel Ⅲ report (ATP Ⅲ) and later updated in 2004[195]. 
It avoids the implication that insulin resistance is the 
primary or only cause of associated risk factors. In 
addition, because the presence of abdominal obesity is 
more highly correlated with the metabolic risk factors, 
measurement of waist circumference was included 
as a clinical method to identify patients susceptible to 
MetS[196]. When it is > 102 cm in men and > 88 cm in 
women it is called abdominal obesity, which is a high 
risk factor of MetS[194]. Other clinical criteria that Grundy 
established for the diagnosis of MetS were a blood 
pressure ≥ 135/85 mmHg[197], elevated fasting glucose 
levels ≥ 110[198], triglycerides ≥ 150 mg/dL[199] and 
HDL-C < 40 mg/dL for men and < 50 mg/dL for women 
(Atherogenic dislipemia). When any 3 of the 5 listed 
characteristics are present, a diagnosis of MetS must 
be made. A proinflammatory state, clinically observed 
by elevation of C-reactive protein (CRP-hs), and a 
prothrombotic state characterized by increased plasma 
levels of the inhibitor of plasminogen activator (PAI-1) 
and fibrinogen are also recognized in MetS.

At the same time (1999) the expert committee of 
the WHO described MetS as a cardiovascular disorder 
associated with insulin resistance. In order to diagnose 
MetS according to WHO criteria, insulin resistance 
should be identified, together with two or more risk 
factors, with minimal changes of the factors previously 
described, but including urinary albumin excretion rate 
≥ 20 µg/min or albumin: Creatinine ratio ≥ 30 mg/g 
(microalbuminuria)[200,201]. 

Last, in order to unify both epidemiologic criteria 
as clinical, the International Diabetes Federation (IDF) 
established a set of criteria for diagnosing MetS[202]. While 
the pathogenesis of MetS and each of its components 
is complex, multifactorial and not well established, 
either central obesity and insulin resistance or both 
are recognized as the main causative requirements. 
Cardiometabolic risk is mainly associated with abdominal 
obesity because VAT triggers dyslipidemia, insulin 
resistance and hypertension[203,204]. This VAT could be 
assessed by CT, MRI and DEXA, costly measures and 
not for everyday use. However WC and WHR may be 
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used as proxy measures of VAT, as they are correlated 
with it[205-207]. Waist circumference gives a closer 
approximation of abdominal obesity than BMI, the range 
being different between ethnic populations with respect 
to overall adiposity, abdominal obesity and visceral 
fat[208-210]. However, IDF dropped the WHO requirement 
for insulin resistance but made abdominal obesity 
necessary as 1 of 5 factors required in the diagnosis. 
IDF provides the following criteria to define MetS: 
Central (abdominal) obesity is readily measured using 
waist circumference and is particularly related with 
each of the other MetS components, singularly with 
insulin resistance, and “is a prerequisite risk factor”. 
Abnormality in the distribution of body fat, associated 
with central obesity and ethnic specific values for waist 
circumference (BMI ≥ 30 kg/m2; WC ≥ 94 and 80 cm 
and 102 and 84 cm, respectively for men and women in 
Europe and United States).

In addition, any two of the following four factors: 
The atherogenic dyslipidemia with: (1) high levels of 
triglycerides (≥ 150 mg/dL); (2) reduced cholesterol-
HDL (< 40 mg/dL in men and < 50 mg/dL in women), 
and more precise analysis high level of apolipoprotein B 
(Apo B) and high number of small and thick LDL particles 
and small HDL particles[211]; (3) Treatment of previously 
diagnosed hypertension or high blood pressure (≥ 130 
mmHg systolic and ≥ 85 mmHg diastolic); and (4) The 
hyperglycemia defined as impaired fasting glucose > 100 
mg/dL or previously diagnosed T2D. 

Other factors such as genetic profile, physical in-
activity, aging, proinflammatory state and hormonal dys-
regulation could be considered[202]. 

Therefore, additional metabolic measurements are 
recommended. Lipodystrophic disorders, either genetic 
(e.g., Dunnigan familial partial lipodystrophy, Berardinelli-
Seip congenital lipodystrophy, etc.) or acquired are 
almost associated with MetS, and occasionally a genetic 
study could be considered. Most components of MetS are 
correlated with a sedentary lifestyle. MetS prevalence and 
each of its components is directly related with age in most 
people on the world. Assessment of body fat distribution 
(DEXA) or central obesity (CT/MRI) or fatty liver content 
(spectroscopy) could be advised. Proinflammatory state 
presents an increased levels of CRP, and adipocytes and 
macrophages release inflammatory cytokines (TNF-α, 
IL-6), and decrease antiinflammatory adiponectin and 
increased leptin levels are associated with adipose dys-
function[212,213]. Prothrombotic state with increased PAI-1 
and fibrinogen[214]. Vascular dysregulation (apart of 
hypertension) could be estimated with endothelial function 
and presence of microalbuminuria. Insulin resistance with 
measurements of fasting insulin/proinsulin levels, HOMA-
IR[215], by Bergman Minimal Model[216], during oral glucose 
tolerance test[217], and gold standard from M value from 
euglycemic-hyperinsulinemic clamp[218,219]. 

Finally, several organizations have attempted to 
harmonize criteria for the definition of MetS [International 
Diabetes Federation Task Force on Epidemiology and 

Prevention, National Heart, Lung, and Blood Institute 
(NHLBI), American Heart Association (AHA), World Heart 
Federation; International Atherosclerosis Society, and 
International Association for the Study of Obesity]. They 
concluded that three abnormal findings out of five would 
be sufficient to diagnose a person as having MetS. The 
IDF and AHA/NHLBI agreed that central obesity may not 
be a prerequisite for diagnosing MetS but could be one of 
the 5 criteria[66].

EFFECTS OF NUTRITION ON METS 
COMPONENTS
The prevalence of MetS based on the ATP criteria rose 
from 28% in the Third National Health and Nutrition 
Examination and Survey (NHANES) 1988-1994, to 32% 
in NHANES 1999-2000. It is estimated that 11% of men 
and 18% of women between the age of 20-39 have 
MetS. But, rates increase to 40% in men and 46% in 
women older than 60 years of age, the frequencies being 
similar in many developed countries of the world[220]. 
However, at the moment epidemiological and clinical 
research has released complex and partial information to 
guide the development of finished nutrition prevention 
programs. The US Departments of Agriculture and Health 
and Human Services issued dietary recommendations 
in the Dietary Guidelines for Americans (DGA), to aid 
decrease the risk of CVD. This document was also 
recommended by the AHA (in 2005 and update in 
2010) as a dietary proposal to decline the incidence of 
MetS[221,222]. The updated edition of the DGA accentuates 
about calory density of the nutrient, and recommends 
a reduced intake of saturated fat and a confined intake 
of trans fats, but a greater intake of whole grain, variety 
of fruit and vegetables, and its adherences have been 
related with a improve in incidence and prevalence of 
MetS[223,224].

Recently, Scientific Report of the 2015 Dietary Guide-
lines Advisory Committee (DGAC) also shows that the 
dietary standard of the majority of the United States 
people, as well as other developed countries, has a low 
intake of key food groups that are important sources 
of shortfall nutrients, including vegetables, fruits, whole 
grains, and dairy[225]. In addition, a higher intake of red 
and processed meats are shown as harmful compared 
with a lower intake, and higher ingestion of sugar-
sweetened foods and beverages as well as derived of 
refined grains have been found damaging with moderate 
to strong evidence. Moreover, the DGAC also found that 
sodium and saturated fat are being over-consumed by 
Americans, and probably in many westernized countries 
as well. However, overweight and obesity rates have 
continued to increase despite actions to recommend 
decreasing the percentage of fat in food, suggesting that 
the actions on obesity are more complex. In addition, 
the healthy Mediterranean-style diet is one of three 
diets recommended by DGAC, because variations of this 
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diet include many components associated with health 
benefits. Mediterranean diet is part of an ancient culture 
of nutrition and is being adopted by different peoples 
and countries. Previously, an elegant study identified the 
subjects with MetS as a target for dietary therapies to 
reduce several components of this syndrome. Patients 
with MetS, received elaborate advice on how to raise 
daily ingestion of whole grains, vegetables, fruits, nuts, 
and olive oil; whereas patients in the control group 
followed a prudent diet. After 2 years, patients that 
follow the Mediterranean diet had an intake higher in 
monounsaturated fat, as well as polyunsaturated fat, 
and fiber and had a decrease ratio of ω-6 to ω-3 fatty 
acids. At 2 years of follow-up, patients consuming the 
Mediterranean diet had significantly reduced serum 
concentrations of hs-CRP, interleukins, as well as IS, and 
endothelial function score were improved. Moreover, the 
Mediterranean diet prevented MetS compared with the 
control group[226]. Last, its beneficial effects have recently 
been reported among persons at high cardiovascular 
risk. A Mediterranean diet supplemented with extra-
virgin olive oil or nuts reduced the incidence of major 
cardiovascular events and prevalence of MetS[38,227]. 

In the prevention and treatment of MetS it has 
been found that it is not one specific diet, but rather 
various changes of nutrients in the diet that should be 
recommended to treat or prevent the onset of each 
different component of the syndrome. 

Effects of nutrition on obesity
The first factor to be avoided in the prevention of MetS 
is obesity, and the percentage of fat in the diet has 
traditionally been associated with the development 
of obesity. There is evidence to show that metabolic 
stressors including energy-dense high-fat diets develop 
obesity, and probably insulin resistance and MetS[228-230]. 
In overweight subjects, selected on the basis of impaired 
glucose tolerance, the prevalence of overweight and 
MetS decreased after two and four years of an extensive 
life-style intervention which mainly included a reduction 
of energy and SFA intake and an increase in physical 
activity[231,232]. However, other strong epidemiological 
evidence has reported contradictory results at this 
point. An important epidemiological analysis from the 
European Prospective Investigation into Cancer and 
Nutrition, which included 519978 participants, found no 
significant relationship between the amount and type 
of fat consumed and annual weight gain. Recently, in 
this cohort it has also been observed that higher SFA 
consumption was not related with higher ischemic heart 
disease risk[230,233]. But, residual confounding factors, 
such as cholesterol-lowering therapy and trans fat 
intake or limited variation in SFA and PUFA intake, may 
explain these findings. Moreover, in well-conducted 
intervention studies, in extremely obese subjects 
with a raised prevalence either diabetes or MetS, a 
higher weight loss was showed after six months on a 
carbohydrate-restricted diet than on a fat-restricted 

diet, with a relative upgrade in IS and triglyceride levels, 
even after control for the amount of weight lost[234]. 
Additionally, in a randomized controlled trial to observe 
weight loss in overweight premenopausal women, 
where four diets containing a gradual and inverse fat 
and carbohydrate content were compared, the diet with 
less carbohydrate content (Atkins) achieved greater 
weight loss and metabolic success[235]. It has also been 
found that high-protein and low glycemic index (GI) 
diets are better tolerated than low-protein with high 
GI. In addition, the low protein with high GI diet was 
associated with subsequent significant weight regain[236]. 
Further, higher weight loss with low-carbohydrate diets 
may be associated to the satiating effects of fat and 
protein content. We have previously found that following 
the intake of a standard breakfast, the glucagon like 
peptide-1 (GLP-1) postprandial release was significantly 
raised in those patients who had eaten an isocaloric olive 
oil-enriched meal compared to when they had a CHO-rich 
meal, further supporting the idea that monounsaturated 
(MUFA) fatty acids may act as secretagogues of GLP-1 
(Figure 5)[237]. The biological effects of GLP-1 well know 
include stimulation of glucose-dependent insulin secretion 
which is lowered until a normal blood glucose level, delay 
gastric emptying and inhibition of food intake, increases 
the b-cell proliferation and inhibition of their cell death[237]. 
Finally, epidemiological studies have established an 
inverse relationship between the consumption of die-
tary fiber and body weight and waist perimeter[238,239]. 
Therefore, several controlled intervention studies de-
monstrated that dietary fiber content in the diet is 
negatively associated with weight gain, and may have 
a satiating effect and decreases the amount of calories 
ingested[240,241]. Thus, weight loss can be difficult to attain 
and maintain long-term with interventions of more or 
less experimental diets. Therefore, important data to 
reduce and maintain body weight should include the total 
amount of energy consumed, others characteristics and 
combinations of the nutrients ingested and the amount 
and type of physical exercise performed daily. The main 
interest of research today is to define the potential 
therapeutic effects of replacing SFA with MUFA or with 
a low-fat diet on regression of MetS or the effect on the 
different components of the syndrome. 

Effects of nutrition on central fat distribution
It is well established that the type of fat consumed could 
be more decisive than the total amount of fat consumed 
when we only look at changes in body composition and 
distribution of adipose tissue[242,243]. It has been proposed 
that high adiposity and central fat deposit is related 
to diets with a high ratio of saturated to unsaturated 
fatty acids[115]. In this regard, SFA refers mainly to 
Myristic (C14), Palmitic (C16) and Stearic (C18) acids; 
MUFA refers mainly to oleic acid (C18:1n-9) in Western 
and Mediterranean countries; PUFA refers mainly to 
linoleic acid (C18:2n-6), a less ratio of alpha-linolenic 
acid (C18:3n-3) and, in relation of seafood ingested, a 
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changeable but lower rate of long chain PUFA such as 
Arachidonic, eicosapentaenoic (EPA), docosapentaenoic 
and docosahexaenoic (DHA) acids; and finally TFA remits 
to the main trans fatty acids which are isomers of 18:1 
trans and are not found in nature and are the result of 
human processing (e.g., hydrogenation). In this issue, 
the Nurses’ Health Study showed just a weak direct 
association between whole fat intake and overweight. 
However, when the proportion of SFA and TFA was 
higher it showed a strong relationship to obesity, but the 
consumption of MUFA and PUFA were not associated[242]. 
In addition, MUFA and PUFA fat intake have been 
associated with healthy effects on body fat distribution 
and improved some other metabolic disorders, as 
compared with SFA and TFA intake, while maintaining 
stable body weight. Therefore, in subjects selected with 
central obesity, after a short intervention with a low-
fat carbohydrate-rich diet, patients grouped according 
to insulin-resistant state (Matsuda < 4) showed a 
redistribution of their body fat from peripheral adipose 
tissue toward central body deposits as compared with 
isocaloric MUFA-rich diet (Table 1)[52]. Moreover, the 
substitution in the diet of saturated with unsaturated 
fat, mainly MUFA, resulted in little but consistent loss 
of body weight, decreased body fat content in limbs 

and trunk, while maintaining a high and isocaloric fat 
content (approximately 40%)[244]. Furthermore, the 
intake of n-3 PUFA, EPA and DHA have been linked to an 
effect on body weight and body composition. Therefore, 
higher plasma levels of total n-3 PUFA are related to a 
decreased BMI and waist and hip circumferences[245]. In 
addition, central fat distribution was negatively related 
with n-6 PUFA and MUFA in adipose tissue that corr-
elated closely with fatty acids intake in obese patients 
from a Mediterranean area[246]. Recently, the long-term 
consumption of a LFHCC diet increased fasting FABP4 
expression in adipose tissue, while it was reduced by the 
consumption of LFHCC supplemented with n-3 diet[247]. 
Finally, it was found that conjugated linoleic acids (CLA) 
produces a reduction on adiposity whereas the lean body 
mass was not altered or increased, and the waist-hip 
ratio decreased significantly compared with placebo in 
adults[248,249]. In another study it was found that the rate 
of body fat lowered in the CLA-treated group, whereas 
body weight, BMI, and central abdominal diameter were 
unmodified[250].

Effects of nutrition on insulin resistance
Insulin resistance is a main characteristic of MetS and 
is related with other components of the syndrome. The 
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KANWU study treated 162 healthy subjects selected 
at aleatory to eat a controlled, isoenergetic diet for 3 
mo containing either a major rate of saturated (SAFA 
diet) or monounsaturated (MUFA diet) fatty acids. 
After 3 mo, subjects lowering saturated fatty acid and 
increasing monounsaturated fatty acid, enhanced IS but 
had no action on insulin secretion. This favorable effect 
of different proportion and fat quality on IS was not 
found in subjects with a fat proportion ingested higher 
than > 37% of energy eaten[251]. In addition, in healthy 
subjects, it has been shown that isoenergetic substitution 
of SFA for MUFA or complex carbohydrates (CCHO) 
improved IS, and other components of MetS such as 
blood pressure[252,253]. In selected subjects with central 
obesity and insulin-resistance on weight maintenance, 
a MUFA-rich diet improved IS (HOMA-IR) and fasting 
proinsulin levels as compared to the CHO-rich diet[237]. 
Finally, in subjects with early diagnosed non alcoholic 
fatty liver disease (NAFLD), those with more adiposity, 
higher trunk fat:leg fat ratio (by DEXA) and lower IS, 
had a higher ratio SAT:MUFA fat intake than insulin 
sensitive (IS) subjects[115]. By contrast, the LIPGENE was 
the largest human intervention study, pan-European 
and multicentre, developed to observe the effects and 
efficacy of changing the type and proportion of dietary 
fat eaten on IS and other metabolic components that 
integrate the MetS. This intervention was isoenergetic to 
avoid the effects of weight modification. At the time, it is 
partially known the metabolic consequence of adhering 
to low-SFA diets enriched in MUFA or to LFHCC diets, and 
whether LC n-3 PUFA can improve the negative effects of 
a low-fat high-carbohydrate diet in MetS. In conclusion, 
LC n-3 PUFA supplementation significantly lowered TG 
and FFA levels in men with MetS. The reduction of dietary 
SFA had no action on IS, blood pressure, LDL cholesterol 
levels and factors of inflammation. The LIPGENE study 
observed that the previous dietary consumed and 
environment may determine responsiveness to dietary 
fat modification with respect to IS. More specific dietary 

fat modifications may be necessary to significantly 
improve IS and other components of MetS; perhaps in 
combination with dietary restriction and weight loss[254]. 
There is evidence that a proportion of fat in the diet in 
excess of 40% worsens IS, especially when ingested fat 
is saturated[251]. However, recently in this same study 
those MetS subjects when were selected from the upper 
HOMA-IR were improved IR, with lowered insulin and 
HOMA-IR levels after ingestion of the HMUFA and LFHCC 
n-3 diets. Therefore, specifically insulin-resistant MetS 
subjects with more metabolic components make a re-
sponse differently to dietary fat change, being more 
sensitive to a healthy effect from the exchange of the 
high SFAs diet by the HMUFA and LFHCC n–3 diets[255].

Effects of nutrition on glucose metabolism
Other dietary factors that can influence various com-
ponents of MetS, like postprandial glycemic and insulin 
levels, triglycerides and HDL-C levels, weight regulation 
and body composition, as well as fatty liver, are the 
glycemic load (GL) and the excess of fructose and dietary 
fiber content of food eaten. On the glycemic index (GI) 
of a food we identify the area under the curve of blood 
glucose levels two hours after ingestion of a set amount 
of CHO where glucose is set to equal 100%. So a low GI 
food will cause a small rise (≤ 55), while a high GI food 
will trigger a dramatic spike (≥ 70)[256]. Diets higher in 
fat and a lower content of CHO necessarily have a lower 
GL and lower GI. Therefore, the beneficial effect of an 
olive oil enriched diet avoiding simple carbohydrates, 
e.g., a typical Mediterranean breakfast with wheat bread 
and olive oil instead of white bread and marmalade, is 
also found during the postprandial state where lower 
glucose and insulin AUCs are observed, as compared 
with CHO-rich diets (Figure 5)[237]. By contrast, during an 
isocaloric low carbohydrate high fat (better MUFA) diet, 
after absorption the free fatty acids are transported via 
the lymphatic system without stimulating the secretion 
of insulin, so the fatty acids are carried directly to the 

Table 1  Composition and body fat distribution after three dietary interventions in insulin-resistant subjects

Baseline High-SAT High-MUFA High-CHO P

EE, (kJ/min)   5.36 ± 0.40   5.49 ± 3.90   5.23 ± 0.37   5.02 ± 0.36  0.3
Anthropometry
  Weight, kg   84.4 ± 5.7 83.2 ± 5.7 83.6 ± 5.8   81.8 ± 6.03  0.3
  Total body fat, kg 36.8 ± 4.1 35.0 ± 4.0 35.6 ± 4.0 34.9 ± 4.3  0.1
  Lean body mass, kg  47.5 ± 2.5 48.1 ± 2.5 48.9 ± 2.6 46.8 ± 2.1  0.2
  Waist to hip ratio   0.99 ± 0.01   0.99 ± 0.01   0.98 ± 0.01   0.98 ± 0.01  0.9
DEXA analysis 
  Total body trunk, g - 37101 ± 2026 38154 ± 1911 39134 ± 2104  0.3
  Fatty body trunk, g - 14313 ± 1362 14842 ± 1437 16459 ± 1653 < 0.05
  Total body limb, g - 36420 ± 3886 36239 ± 3862 32887 ± 3825   0.7
  Fat in arm, g -   7097 ± 1528   7652 ± 1339   7225 ± 1830   0.4
  Fat in leg, g -   8517 ± 1588   8036 ± 1398   7358 ± 1253 < 0.05
  Fat trunk:fat leg ratio -   1.9 ± 0.3   2.1 ± 0.2 2.50 ± 0.2 < 0.05

Data are mean ± SE. P value is analysis of variance for repeated variables. Copyright 2007 American Diabetes Association. 
Diabetes Care 2007; 30: 1717-1723. Reprinted with permission from the American Diabetes Association. EE: Energy expenditure; 
SAT: Saturated fat; MUFA: Monounsaturated fat; CHO: Carbohydrates rich diets; DEXA: Dual energy X-ray absorptiometry.
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peripheral adipose tissue; thus, postprandial insulin 
peak and hyperglycemia are reduced[237]. These higher 
postprandial levels of glucose and insulin after eating 
foods with a high GI or GL may mediate changes on 
adiposity and central fat redistribution observed in 
selected insulin-resistant subjects (Table 1)[52]. Following 
intestinal absorption of excess carbohydrates these 
are transported via portal and, after signaling insulin 
secretion in the pancreas, are deposited in the liver. 
However, in obese subjects, when the storage limit is 
exceeded, and through several metabolic pathways, that 
mainly include the transcription protein carbohydrate 
response element binding protein, which is activated by 
a high-carbohydrate diet, the glucose can be used to 
synthesize fatty acids which are released into plasma as 
VLDL rich in triglyceride[257]. Thus, triglycerides can be 
captured more widely and again can reach the central 
depot (Figure 4). Once the function of liver buffer is lost, 
a state of concomitant hyperglycemia, hyperinsulinemia 
and hypertriglyceridemia and fatty liver results, due 
to the consumption of diets high in carbohydrates and 
high GI. However, conflicting data have been pub-
lished addressing this concept. It is possible that the 
type of CHO eaten as well as other macronutrients 
accompanying these diets could modify and partially 
explain these discrepant results. Therefore, intervention 
studies looking at the effects of GI and GL have not had 
clarifying results. The comparisons of four diets of varying 
GL on weight loss and cardiovascular risk reduction in a 
randomized controlled trial was made in 129 overweight 
and obese young adults[258]. The authors concluded that 
either high-protein or low-GI regimes could have effect 
on body fat loss, but effects on cardiovascular risk factors 
are improved by a high-carbohydrate but low-GI diet.

Effects of nutrition on atherogenic dyslipidemia
The increased levels of triglycerides associated with 
hypoalphalipoproteinemia, are a feature of insulin resi-
stance and MetS, and increase cardiovascular risk 
regardless of LDL cholesterol levels. The high insulin 
levels in MetS constantly target the peripheral adipose 
tissue and stimulates its hypertrophy, which initiates an 
aberrant inflammatory condition (↑M1 Ø) with elevated 
levels of TNF-α and IL-6 resulting in adipose dysfunction. 
Therefore the activity of lipoprotein lipase is reduced in AT 
and the triglyceride clearance is decreased. Adiponectin 
levels are reduced and the b-oxidation can be lowered 
by muscles and liver as well as lowering the sensitivity 
to insulin (Figure 2)[52,259,260]. Furthermore, the increase 
of VLDL (↑TG) can interact with reverse cholesterol 
transport by exchanging triglycerides for cholesterol of 
HDL-C molecules, which eventually can be reduced in 
plasma. In fact, low HDL-C levels can be considered as 
one of the earliest signs of a state of insulin resistance. 
The consumption of a extra-virgin olive-oil-based 
breakfast by central-obese insulin-resistant subjects 
lowered postprandial glucose and insulin postprandial 
excursions, and increased GLP-1 levels as compared with 

a isocaloric standard CHO-rich breakfast (Figure 5)[237]. 
In addition, the effects of these dietary interventions on 
the plasma lipid profile in these insulin-resistant subjects 
independently of weight loss were also investigated. 
Serum total cholesterol and Apo B levels tended to 
decrease after the CHO diets, but a potentially harmful 
result lowering HDL-C concentrations (approximately 
11%) was also observed. By contrast, the consumption of 
a hight MUFA diet was associated with significantly higher 
HDL-C levels. However, fasting serum triacylglycerol 
concentrations were not altered by any of the three 
diets (SAT, MUFA and CHO). These effects could be 
associated to the fact that body weight was maintained 
unchanged during the three dietary periods, suggesting 
that triglycerides levels are mainly related with total 
body fat[237]. By contrast, in the LIPGENE human dietary 
intervention study, MetS subjects (n = 472) from 8 
European countries were randomly assigned 4 diets: A 
HSFA; a HMUFA diet; a LFHCC diet supplemented with 
long-chain n–3 polyunsaturated fatty acids (1.2 g/d); 
or a LFHCC diet supplemented with placebo for 12 wk 
(control). The LFHCC n-3 PUFA diet reduced plasma TG 
and FFA concentrations, particularly in men[254]. Finally, in 
this study, was made a post hoc analysis, selecting only 
those patients who had been diagnosed of MetS syndrome 
(according to NCEP MetS criteria updated by the joint 
scientific statement harmonizing the MetS criteria) to 
observe the effect after 12 wk of an isoenergetic dietary 
fat exchange on final incidence of each component of 
MetS. In addition, final regression of MetS and each 
component of MetS post-intervention were also investi-
gated. This study concluded that an isoenergetic LFHCC 
diet supplemented with LC n-3 PUFA reduced some 
features of MetS compared with high-fat (HSFA and 
HMUFA) diets and low-fat diet without LC n-3 PUFA. The 
prevalence of enlarged waist circumference, hypertension 
and hypertriacylglycerolemia were reduced after the 
isoenergetic LFHCC n-3 diet. Thus, the prevalence of 
MetS fell by 20.5% after LFHCC n-3 diet compared with 
the HSFA (10.6%), HMUFA (12%) or LFHCC (10.4%) 
diets (Figure 6)[261]. Interestingly, the prevalence of 
hypertension was reduced after consumption of LFHCC 
diet supplemented with VLC n-3 PUFA. In a population-
based study on food n-3 PUFA intake, an independent 
inverse relation of total n-3 PUFA intake to systolic and 
diastolic pressure has previously been shown[262]. In 
addition, the capacity of PUFAs to target the signaling on 
gene expression of SREBP-dependent, which controls 
genes implicated in cholesterol metabolism, gives an 
evidence of the potential effects of fatty acids on gene 
expression, beyond of purely nutritional[263]. Further, 
it has been observed that n-3 fatty acids but not SAT 
fatty acids are important activators of PPAR-α implicated 
in triglycerides reduction. Therefore, because of their 
capacity to repress inflammatory pathways and control 
the expression of a great quantity of genes associated 
to lipid metabolism and adipose tissue, n-3 fatty acids 
are being using as therapeutic agents in lipids, T2D, 
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steatohepatitis and MetS. 

Effect of fiber on glucose and lipid metabolism
Different fiber content of the diet can influence several 
components of MetS. The ADA recommends an consu-
mption of dietary fiber of 20 to 35 g per day mainly 
since of the cholesterol-lowering and glucose-lowering 
results of soluble fiber. However, more beneficial actions 
of a higher ingestion of dietary fiber, specially of the 
soluble form, over the amount advised by the ADA, 
were reported to get better glycemic control, lowers 
hyperinsulinemia, and decreases plasma lipid levels in 
type 2 diabetic patients[264]. This should warn us that the 
intake of complex carbohydrates with high fiber content 
(e.g., whole bread) have healthier effects compared with 
refined CHO food popular in modern nutrition. Therefore, 
maintaining a diet that includes a high intake of fruits, 
vegetables, and whole grains, a rich sources of dietary 
fiber, such as a Mediterranean diet, should be strongly 
emphasized. 

Effect of nutrition on adipokines
We have recently analyzed the repertoire of adipokines 
in patients diagnosed with fatty liver, a human model of 
central obesity, much of them with MetS. We confirmed 
that IR patients had lower serum adiponectin level than 
IS patients, and a positive correlation between IS index 
(ISi) and serum adiponectin levels was observed[115]. It 
has been shown that hypoadiponectinemia may play a 
pathophysiological role in the progression from NAFLD 
to NASH. Adiponectin exerts a endocrine protective 
action on liver fat accumulation favoring lipolysis (Figure 
2)[129]. In addition, we have previously documented a 
differential postprandial regulation of adiponectin gene 
expression on peripheral adipose tissue in response to 
differences in the isocaloric macronutrient composition 

of diets. Therefore, after a CHO-rich breakfast a lowered 
adiponectin mRNA expression levels were found as 
compared when a MUFA-rich breakfast were eaten[52]. 
The paracrine effects of adiponectin can increase insulin 
sensitivity by increasing fat b-oxidation and energy 
expenditure on skeletal muscle[265]. Therefore, these 
actions and a direct adiponectin effect on the ability of 
adipose tissue to expand it seems play a key role for 
the regulation in differences in insulin sensitivity and the 
prevention of central-obesity in responses to different 
macronutrient composition of diets, in the context of 
isoenergetic diets and energy balance[52,115]. Finally, a 
recent review on the effects of diet on adiponectin levels 
summarizes that daily consumption of sea foods or 
omega-3 supplementation could increase adiponectin 
concentrations by 14%-60%. In addition, weight loss 
performed with a low-calorie diet more physical activity 
raised adiponectin concentrations by 18%-48%. Last, 
with fiber supplementation were improved adiponectin 
levels until a 60%-115%[266].

Adiponectin and leptin seem to regulate the de-
position of fat in insulin-sensitive tissues by increasing 
fat oxidation. However, whereas leptin acts on peripheral 
target and through CNS, adiponectin seems to act mainly 
on peripheral tissue and liver. Therefore, deposition of fat 
in the trunk but not in the legs was directly related with 
increased liver enzyme levels. Fatty liver patients with IR 
show lower leptin (LEP) mRNA expression in peripheral 
adipose tissue in comparison with IS patients[115]. In 
these patients we failed to show differences in LEP serum 
levels between IR and IS patients. Nevertheless, since IR 
patients were more obese and had higher energy intake 
in comparison with IS subjects, we speculate that IR 
patients should have exhibited relatively higher plasma 
leptin concentrations. This may indicate a dysfunction of 
adipose tissue in maintaining appropriate levels of leptin 
to overcome the state of leptin resistance observed in 
obese subjects particularly where insulin resistance is 
developed[115]. With respect to the response to diets with 
different macronutrient composition, there is evidence 
that long-term change in diet (approximately 1 year), 
including decreased intake of SATs and increased PUFA 
reduced plasma LEP concentration regardless of changes 
in fat mass[267]. The results of a study conducted in our 
laboratory, are interesting. The study was on the acute 
effects of different isocaloric diets during postprandial 
state and after an insulin treatment on molecular 
markers characteristically involved in the process of WAT 
expansion. All patients were previously diagnosed with 
fatty liver and IR (n = 15) and were stabilized for 2 wk 
with an isocaloric standard diet (National Cholesterol 
Education Program step 1) for fasting peripheral adipose 
biopsy. They then randomly eat each one of three 
isocaloric-specific diets for 4 wk, finally undergoing 
a postprandial biopsy of adipose tissue after three 
specific meal test meals; a high saturated fat (SAS), 
high monounsaturated (MUFA) and low-FAT high-
carbohydrates (CHO) (Table 2). The gene-expression 
array profiles in IR patients showed that acute response 
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after an isocaloric-specific diet (180 min) (MUFA, SAT 
and CHO) presented similar postprandial transcripts. 
Our gene-expression arrays further confirmed that 
an anabolic stimulus induced by insulin treatment can 
acutely increase LEP and PPARG gene expression in WAT 
per se. It has been observed that PPARG and insulin are 
involved in the nutritional regulation of the fsp27 gene 
in WAT, which is needed for the most favorable energy 
storage and performs a key role regulating whole-body 
energy equilibrium[268]. Additionally, this is important 
because PPARG pharmacologic ligands, such as the 
thiazolidinediones, increase peripheral AT capacity and 
decreases liver fat deposition, resulting in a healthier 
insulin action and liver enzymatic profile[269]. However, 
as with glitazone treatment, insulin therapy is often 
associated with weight gain due to its lipogenic effects. 
Therefore, this approach has the potential of initiating 
a vicious cycle ultimately leading to further obesity and 
metabolic stress, and eventually to more IR.

Effect of nutrition on oxidative stress
Finally, we have gathered information about the energy 
balance of these patients. Our results indicate that in 
early stages of the disease, changes in REE, RQ, and 
CHO, fat and protein oxidation could not be differentiated 
between IR and IS patients. However, the higher waist-
to-hip ratio early correlated negatively with CHO oxidation 
and directly with fat-oxidation, suggesting that central 
adipose fat distribution could decrease glucose utilization 
as fuel. In addition, the increase in energy intake in 
IR patients seemed to be primarily related to their 
apparent preference for higher saturated fat and refined 
cereal, sugar and soft drink intake. Several mechanisms 
have implicated high SAT and sugar diets with the 
development of fatty liver. This includes its association 
with higher insulin resistance, as well as an increase in 
markers associated with endoplasmic reticulum stress, 
excessive production of reactive oxygen species, leading 
to inflammatory and proapoptotic responses. 

The ability of the adipose tissue to keep in reserve 
fats in obesity is associated with different cellular ac-
tions. Thus, a key function in this issue is improving 
performance of the endoplasmic reticulum (ER) in the 
adipocytes. ER is a main organelle that regulates nutrient 
storage, and the surplus of nutrients increases the 
amount of altered proteins synthesis witch accumulate 
in the ER. ER stress has been related to many effects of 
disability cellular that include activation of inflammation 
and stress networks, closely linked to turn on with by 
oxidative stress and insulin resistance. The actions of 
different dietary fat compositions in functions of ER stress 
on adipose tissue has been investigated in patients with 
obesity and MetS. In a substudy accomplished within the 
LIPGENE study, 39 MetS patients were assigned to one 
of four isocaloric diets: High-SFA (38% E from fat, 16% 
as SFA), high MUFA (38% E from fat, 20% MUFA), and 
two low-fat, high-complex carbohydrate (28% E from 
fat) diets supplemented with 1.24 g/d of long-chain n-3 

PUFA or placebo for 12 wk each. This study observed 
that during the postprandial state, several genes linked 
to ER stress, such as sXBP-1 and BiP, independent of the 
fat consumed, in peripheral adipose tissue of patients 
with MetS, are activated. In addition, after the 12 wk 
of HSFA diet the expression of PDIA3 gene was twice 
higher than after 12 wk of LFHCC n-3 diet. Overall, these 
data indicate that increase of ER stress in adipose tissue, 
by amount and different types of fat intake, could play 
a key role for regulating the capacity of glucose and 
TG clearance. Thus, ER capacity of AT may modulate 
metabolic flexibility, initially during postprandial state, 
accelerating remove of glucose and lipid[270].

Moreover, a high oxidative stress is found in MetS 
patients, which is showed by a raised activity of NADPH-
oxidase and a reduced expression of antioxidant enzymes 
in the adipose tissue. In patients from the LIPGENE study 
it was observed that MUFA fat intake decreases oxidative 
stress as compared with high SAT fat diet by increasing 
postprandial antioxidant reaction in adipose tissue. 
Therefore, changing a proportion of SFA by MUFA in the 
diets could have any beneficial effect to decrease the 
oxidative stress in MetS patients[271]. Last, MetS patients 
normally present higher inflammatory state in AT, which 
is increased during postprandial response, which was 
seen with independence of the fat eaten. We have found 
that p65, IkBα, MCP-1 and IL-1b gene transcripts were 
induced during the postprandial response, also with 
independence of fat intake. Of note, IL-6 expression was 
only identify after the postprandial responses[272].

In summary, in patients at risk, achieving and main-
taining an ideal body weight, adjusting energy balance 
between calorie intake and daily regular exercise is 
essential in preventing the development of MetS, 
regardless of the distribution of macronutrient energy. 
However, the composition of macronutrients can have 
beneficial or harmful effects on several factors of the 
metabolic profile, and this can be very important in the 
dietary counseling of patients with MetS. 

Therefore, in subjects with early central obesity 
associated with other components of MetS, the first 
recommendation would be to reduce calorie intake and 
ensure daily physical exercise in order to achieve an 
ideal weight. Secondly, avoid the intake of trans fat, 
mainly cakes, biscuits, pastries, etc., and moderate the 
intake of saturated fat, mainly red meat, processed 
meats and meat sauces. Thirdly, avoid eating simple 
carbohydrates, such as sugar, soft drinks, and fruit 
and juices in excess. This will prevent insulin spike, an 
increment in triglycerides levels, and also improve the 
reverse transport cholesterol, and probably fatty liver 
and central obesity. It is preferable to increase the intake 
of complex carbohydrates with a lower glycemic index 
such as wholemeal bread and legumes. Moderate intake 
of white pasta, potatoes, white rice, etc., is permitted, 
but these should be eaten with plenty of vegetables, 
thus increasing fiber content will decrease its GI. The 
fourth recommendation, is to moderate protein intake 
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of high biological value associated with polyunsaturated 
fatty acids ω-3, which can be achieved by replacing 
portions of meat with seafood. Lastly, take abundant 
and varied vegetables daily in the two main dishes, 
fresh and steamed, seasoned with moderate portions 
of extra virgin olive oil and small portions of dried 
fruits. This will not only ensure vitamin and mineral 
requirements are met, but will also give the meal a 
high fiber volume, flatten postprandial blood glucose of 
carbohydrates eaten, and the dried fruits will ensure that 
ω-6 polyunsaturated needs are met. In addition, olive oil 
should be used in moderate amounts, not more than 20 
cc (approximately 180 kcal) per 1000 calories consumed, 
thus avoiding their overuse, which can lead to obesity. 
Olive oil is a healthy fat with obvious improvements in 
atherogenic lipid profile, and contains polyphenols as 
well as some fat-soluble vitamins like vitamin E which 
are natural antioxidants[273]. A modest reduction in 
salt consumption causes significant decreases in blood 
pressure either hypertensive or normotensive individuals. 
Thus, the current guidance to decrease salt ingestion 
to 5-6 g/d should be advised, but a further reduction 
lower 3 g/d could be required in MetS[16]. In addition, 
moderate ingestion of red wine is related with a inferior 
prevalence of MetS, as well as with beneficial effects on 
central adiposity, lipid profile and fasting insulin levels[274]. 
Finally, until more conclusive data, it is essential that 2-3 
servings per day of semi-skimmed milk and derivatives, 
and at least 2-3 eggs per week should be included in the 
diet. Both nutrients provide proteins of high biological 
value, provide some needs in essential minerals, and are 

reasonably low in fat.
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